19459

Символьные вычисления

Лабораторная работа

Информатика, кибернетика и программирование

В ходе лабораторной работы я научился выполнять символьные вычисления, такие как нахождение производной различных порядков, поиск пределов функций, нахождение определенных и неопределенных интегралов и т.д.

Русский

2014-03-24

37.15 KB

2 чел.

Лабораторная работа 2

«Символьные вычисления»

Задание

  1.    Найти пределы функций:
       
  2.  Найти первую  и вторую  производные функций:
      

  1.  Найти неопределенный интеграл:
     
  2. Вычислить интеграл:
  3. Вычислить двойной интеграл:
  4.  Разложить в ряд Тейлора и Маклорена выражения:
    y=ln(x) в окрестности точки х=1;
    y=e2x  в окрестности точки х=0
  5.  Вычислить сумму ряда:
  6.  Решить уравнения:
     
  7.  Решить дифференциальные уравнения:
  8.  Разложить на множители числа: 12587, 25873, 89654;
  9.   Разложить на множители выражения:

  1.  Упростить выражения:
  2.  Расширить выражения:

Код программы и результат ее выполнения

I.

>> syms x

>> limit(sqrt(1+x)-sqrt(1-x)/3*x)

 

ans =

 

1

>> limit(1-cos(x)/5*x^2,1)

 

ans =

 

1 – cos(1)/5

II.

diff(2*sqrt(4*x+3))

 

ans =

 

4/(4*x + 3)^(1/2)

>> diff(2*sqrt(4*x+3),2)

 

ans =

 

-8/(4*x + 3)^(3/2)

diff(log(sin(2*x+5)))

 

ans =

 

(2*cos(2*x + 5))/sin(2*x + 5)

diff(log(sin(2*x+5)),2)

 

ans =

 

- (4*cos(2*x + 5)^2)/sin(2*x + 5)^2 – 4

%3 пример, добавил ф-ю с упрощением ответа

>> f = @ (ans) simplify(ans)

f =

   @(ans)simplify(ans)

>> diff(x^(sin(x)))

 

ans =

 

x^(sin(x) - 1)*sin(x) + x^sin(x)*cos(x)*log(x)

f(ans)

 

ans =

 

x^(sin(x) - 1)*(sin(x) + x*cos(x)*log(x))

 

>> diff(x^(sin(x)),2)

 

ans =

 

x^(sin(x) - 1)*cos(x) + sin(x)*(x^(sin(x) - 2)*(sin(x) - 1) + x^(sin(x) - 1)*cos(x)*log(x)) + cos(x)*log(x)*(x^(sin(x) - 1)*sin(x) + x^sin(x)*cos(x)*log(x)) + (x^sin(x)*cos(x))/x - x^sin(x)*log(x)*sin(x)

 

>> f(ans)

 

ans =

 

x^(sin(x) - 2)*(x^2*cos(x)^2*log(x)^2 - x^2*log(x)*sin(x) + 2*x*cos(x)*log(x)*sin(x) + 2*x*cos(x) + sin(x)^2  sin(x))

>> syms x

>> F = (exp(cos(x))+3)^2

 

F =

 

(exp(cos(x)) + 3)^2

 

>> diff(F)

 

ans =

 

-2*exp(cos(x))*sin(x)*(exp(cos(x)) + 3)

 

>> diff(F,2)

 

ans =

 

2*exp(2*cos(x))*sin(x)^2 - 2*exp(cos(x))*cos(x)*(exp(cos(x)) + 3) + 2*exp(cos(x))*sin(x)^2*(exp(cos(x)) + 3)

 

>> simplify(ans)

 

ans =

 

-2*exp(cos(x))*(3*cos(x) - 3*sin(x)^2 + exp(cos(x))*cos(x) - 2*exp(cos(x))*sin(x)^2)

 

III.

int((sin(x))^3/cos(x)^1/4)

 

ans =

 

- sin(x)^2/8 – log(cos(x))/4

IV.

>> int(1/x^2+2*x+2,x,-inf,inf)

 

ans =

 

NaN

 

>> isnan(ans)

ans =

    1

V.

>> int((int(sin(x)+cos(y),y,x^2/4-1,2-x)),x,-6,2)

ans =

2*sin(6) - 2*sin(2) + sin(1)^2 - sin(3)^2 + 2*sin(4)^2 + 2^(1/2)*pi^(1/2)*sin(1)*fresnelC(2^(1/2)/pi^(1/2)) - 2^(1/2)*pi^(1/2)*sin(1)*fresnelC(-(3*2^(1/2))/pi^(1/2)) + 2^(1/2)*pi^(1/2)*fresnelS(2^(1/2)/pi^(1/2))*(2*sin(1/2)^2 - 1) - 2^(1/2)*pi^(1/2)*fresnelS(-(3*2^(1/2))/pi^(1/2))*(2*sin(1/2)^2 – 1)

%2 вариант, результат совпадает

int((sin(x)+cos(y)),y,x^2/4-1,2-x)

 

ans =

 

- sin(x^2/4 - 1) - sin(x - 2) - sin(x)*(x - 2) - sin(x)*(x^2/4 - 1)

 

>> int((ans),x,-6,2)

 

ans =

2*sin(6) - 2*sin(2) + sin(1)^2 - sin(3)^2 + 2*sin(4)^2 + 2^(1/2)*pi^(1/2)*sin(1)*fresnelC(2^(1/2)/pi^(1/2)) - 2^(1/2)*pi^(1/2)*sin(1)*fresnelC(-(3*2^(1/2))/pi^(1/2)) + 2^(1/2)*pi^(1/2)*fresnelS(2^(1/2)/pi^(1/2))*(2*sin(1/2)^2 - 1) - 2^(1/2)*pi^(1/2)*fresnelS(-(3*2^(1/2))/pi^(1/2))*(2*sin(1/2)^2 — 1)

VI.

>> x=sym('x');

>> F = (exp(2*x))

 

F =

 

exp(2*x)

>> taylor(F,10,0)

 

ans =

 

(4*x^9)/2835 + (2*x^8)/315 + (8*x^7)/315 + (4*x^6)/45 + (4*x^5)/15 + (2*x^4)/3 + (4*x^3)/3 + 2*x^2 + 2*x + 1

F=log(x)

 

F =

 

log(x)

 

>> taylor(F,10,1)

 

ans =

 

x - (x - 1)^2/2 + (x - 1)^3/3 - (x - 1)^4/4 + (x - 1)^5/5 - (x - 1)^6/6 + (x - 1)^7/7 - (x - 1)^8/8 + (x - 1)^9/9 – 1

VII.

syms n

>> symsum(1/sqrt(n)*log(n+1/n-1),2,10)

 

ans =

log(13/4)/2 + log(73/9)/3 + (2^(1/2)*log(3/2))/2 + (3^(1/2)*log(7/3))/3 + (5^(1/2)*log(21/5))/5 + (6^(1/2)*log(31/6))/6 + (7^(1/2)*log(43/7))/7 + (8^(1/2)*log(57/8))/8 + (10^(1/2)*log(91/10))/10

>> syms x

>>

>> F=1/x^2-4*x+5

 

F =

 

1/x^2 - 4*x + 5

>> symsum(F,1,inf)

 

ans =

 

NaN

 

VIII.

>> syms x

>> solve('2*(sin(x))^2-3*sin(x)+1=0')

 

ans =

 

    pi/2

    pi/6

(5*pi)/6

>> double(ans)

ans =

   1.5708

   0.5236

   2.6180

 

solve('sqrt(x+3)-sqrt(2*x-1)=sqrt(3*x-2)')

 

ans =

 

1

IX.

>> syms x y

>> dsolve('Dy=y^2/x^2-2')

 

ans =

 

                                 2^(1/2)*x

                                -2^(1/2)*x

-2^(1/2)*x*tan(2^(1/2)*x*(C7 – t/x^2)*i)*i

>> dsolve('Dy=x*y-y/x+1=x','y(1)=0')

 

ans =

 

-(x - (x*exp((t*(x^2 - 1))/x))/exp((x^2 - 1)/x))/(x^2 – 1)

X.

>> factor(12587)

ans =

   41   307

factor(25873)

ans =

      25873

%простое число

factor(89654)

ans =

          2          23        1949

XI.

>> syms x y z

>> factor(x^2+2*x*y+2*y*z-z^2)

 

ans =

 

(x + z)*(x + 2*y – z)

>> factor(x^4+x^(2)*y^(2)+y^4)

 

ans =

 

(x^2 - x*y + y^2)*(x^2 + x*y + y^2)

>> clear all

>> syms a b c

>> factor(a^3+b^3+c^3-3*a*b*c)

 

ans =

 

(a + b + c)*(a^2 - a*b - a*c + b^2 - b*c + c^2)

 

XII.

>> syms a b z

simplify(a^6-b^6/a^2-b^2-a^6+b^6/a^2+b^2)

 

ans =

 

0

>> simplify((z^2-2)*(z^2+2)+((z^2+1)^2)-(z^2-1)+8)

 

ans =

 

2*z^4 + z^2 + 6

XIII.

>> syms a x

>> S = ((a^2+1/2*a))^5;

>> T = ((5*x^2+4*x-4))^4;

>> expand(S)

 

ans =

a^10 + (5*a^9)/2 + (5*a^8)/2 + (5*a^7)/4 + (5*a^6)/16 + a^5/32

 

>> expand(T)

ans =

625*x^8 + 2000*x^7 + 400*x^6 - 3520*x^5 - 1184*x^4 + 2816*x^3 + 256*x^2 - 1024*x + 256

Вывод. В ходе лабораторной работы я научился выполнять символьные вычисления, такие как нахождение производной различных порядков, поиск пределов функций, нахождение определенных и неопределенных интегралов и т.д.


 

А также другие работы, которые могут Вас заинтересовать

13484. Автоматизация работы с данными 591 KB
  Автоматизация работы с данными Лабораторная работа Задача 1. Создание новой информационной базы. 1. Выполните Пуск Программы 1C Предприятие 8.1 Конфигуратор. 2. В появившемся окне Запуск 1С: предприятия щелкните по кнопке Добавить. 3. В появившемся окне Добавление и...
13485. Оценка качества управления САР 288.5 KB
  Лабораторная работа №8. Тема: Оценка качества управления САР Дисциплина: ОПД.Ф.15. Теория автоматического управления 1. Цель работы Исследовать влияние структуры и параметров системы на качество переходных процессов и статическую ошибку. Определить показатели к...
13486. Исследование характеристик типовых динамических звеньев (усилительное и апериодическое звено 1-го порядка) 881 KB
  Лабораторная работа №2 на тему: Исследование характеристик типовых динамических звеньев усилительное и апериодическое звено 1го порядка Дисциплина: ОПД.Ф.15. Теория автоматического управления 1. Цель работы. 1.1. Исследование взаимосвязей между параметрами ...
13487. Исследование характеристик типовых динамических звеньев (апериодическое звено 2-го порядка, колебательное и консервативное звенья) 720.5 KB
  Лабораторная работа №3 по предмету Теория автоматического управления на тему: Исследование характеристик типовых динамических звеньев апериодическое звено 2го порядка колебательное и консервативное звенья 1. Цель работы. 1.1. Исследование взаимосвязей ме
13488. Исследование характеристик типовых динамических звеньев (идеальное интегрирующее звено, реальное интегрирующее звено, изодромное звено) 866 KB
  Лабораторная работа №4 по предмету Теория автоматического управления на тему: Исследование характеристик типовых динамических звеньев идеальное интегрирующее звено реальное интегрирующее звено изодромное звено 1. Цель работы. 1.1. Исследование взаимос...
13489. Исследование характеристик типовых динамических звеньев (идеального дифференцирующего звена, реального дифференцирующего звена, звена чистого запаздывания.) 1.12 MB
  Лабораторная работа №5 по предмету Теория автоматического управления на тему: Исследование характеристик типовых динамических звеньев идеального дифференцирующего звена реального дифференцирующего звена звена чистого запаздывания. 1. Цель работы. 1.1. Ис...
13490. Принципы функционирования среды Matlab и Simulink 178.5 KB
  Лабораторная работа №1 на тему: Принципы функционирования среды Matlab и Simulink Дисциплина: ОПД.Ф.15. Теория автоматического управления 1. Цель работы. 1.1. Ознакомление с основными правилами структурного метода построения типовых звеньев используя библиотеку объектов S...
13491. ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ ЛИНЕЙНЫХ САУ 120.5 KB
  Лабораторная работа №7. ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ ЛИНЕЙНЫХ САУ. Дисциплина: ОПД.Ф.15. Теория автоматического управления ЦЕЛЬ РАБОТЫ. Исследование влияния параметров линейной системы рис. 1 на ее устойчивость; Изучение возможностей практического
13492. Синтез САУ 816 KB
  Лабораторная работа №9. Тема: Синтез САУ Дисциплина: ОПД.Ф.15. Теория автоматического управления Цель работы: 1. Изучение методики выбора типового регулятора и расчета его настроек. 2. Практическая оценка и исследование характеристик САР с типовым регулятором о...