19459

Символьные вычисления

Лабораторная работа

Информатика, кибернетика и программирование

В ходе лабораторной работы я научился выполнять символьные вычисления, такие как нахождение производной различных порядков, поиск пределов функций, нахождение определенных и неопределенных интегралов и т.д.

Русский

2014-03-24

37.15 KB

2 чел.

Лабораторная работа 2

«Символьные вычисления»

Задание

  1.    Найти пределы функций:
       
  2.  Найти первую  и вторую  производные функций:
      

  1.  Найти неопределенный интеграл:
     
  2. Вычислить интеграл:
  3. Вычислить двойной интеграл:
  4.  Разложить в ряд Тейлора и Маклорена выражения:
    y=ln(x) в окрестности точки х=1;
    y=e2x  в окрестности точки х=0
  5.  Вычислить сумму ряда:
  6.  Решить уравнения:
     
  7.  Решить дифференциальные уравнения:
  8.  Разложить на множители числа: 12587, 25873, 89654;
  9.   Разложить на множители выражения:

  1.  Упростить выражения:
  2.  Расширить выражения:

Код программы и результат ее выполнения

I.

>> syms x

>> limit(sqrt(1+x)-sqrt(1-x)/3*x)

 

ans =

 

1

>> limit(1-cos(x)/5*x^2,1)

 

ans =

 

1 – cos(1)/5

II.

diff(2*sqrt(4*x+3))

 

ans =

 

4/(4*x + 3)^(1/2)

>> diff(2*sqrt(4*x+3),2)

 

ans =

 

-8/(4*x + 3)^(3/2)

diff(log(sin(2*x+5)))

 

ans =

 

(2*cos(2*x + 5))/sin(2*x + 5)

diff(log(sin(2*x+5)),2)

 

ans =

 

- (4*cos(2*x + 5)^2)/sin(2*x + 5)^2 – 4

%3 пример, добавил ф-ю с упрощением ответа

>> f = @ (ans) simplify(ans)

f =

   @(ans)simplify(ans)

>> diff(x^(sin(x)))

 

ans =

 

x^(sin(x) - 1)*sin(x) + x^sin(x)*cos(x)*log(x)

f(ans)

 

ans =

 

x^(sin(x) - 1)*(sin(x) + x*cos(x)*log(x))

 

>> diff(x^(sin(x)),2)

 

ans =

 

x^(sin(x) - 1)*cos(x) + sin(x)*(x^(sin(x) - 2)*(sin(x) - 1) + x^(sin(x) - 1)*cos(x)*log(x)) + cos(x)*log(x)*(x^(sin(x) - 1)*sin(x) + x^sin(x)*cos(x)*log(x)) + (x^sin(x)*cos(x))/x - x^sin(x)*log(x)*sin(x)

 

>> f(ans)

 

ans =

 

x^(sin(x) - 2)*(x^2*cos(x)^2*log(x)^2 - x^2*log(x)*sin(x) + 2*x*cos(x)*log(x)*sin(x) + 2*x*cos(x) + sin(x)^2  sin(x))

>> syms x

>> F = (exp(cos(x))+3)^2

 

F =

 

(exp(cos(x)) + 3)^2

 

>> diff(F)

 

ans =

 

-2*exp(cos(x))*sin(x)*(exp(cos(x)) + 3)

 

>> diff(F,2)

 

ans =

 

2*exp(2*cos(x))*sin(x)^2 - 2*exp(cos(x))*cos(x)*(exp(cos(x)) + 3) + 2*exp(cos(x))*sin(x)^2*(exp(cos(x)) + 3)

 

>> simplify(ans)

 

ans =

 

-2*exp(cos(x))*(3*cos(x) - 3*sin(x)^2 + exp(cos(x))*cos(x) - 2*exp(cos(x))*sin(x)^2)

 

III.

int((sin(x))^3/cos(x)^1/4)

 

ans =

 

- sin(x)^2/8 – log(cos(x))/4

IV.

>> int(1/x^2+2*x+2,x,-inf,inf)

 

ans =

 

NaN

 

>> isnan(ans)

ans =

    1

V.

>> int((int(sin(x)+cos(y),y,x^2/4-1,2-x)),x,-6,2)

ans =

2*sin(6) - 2*sin(2) + sin(1)^2 - sin(3)^2 + 2*sin(4)^2 + 2^(1/2)*pi^(1/2)*sin(1)*fresnelC(2^(1/2)/pi^(1/2)) - 2^(1/2)*pi^(1/2)*sin(1)*fresnelC(-(3*2^(1/2))/pi^(1/2)) + 2^(1/2)*pi^(1/2)*fresnelS(2^(1/2)/pi^(1/2))*(2*sin(1/2)^2 - 1) - 2^(1/2)*pi^(1/2)*fresnelS(-(3*2^(1/2))/pi^(1/2))*(2*sin(1/2)^2 – 1)

%2 вариант, результат совпадает

int((sin(x)+cos(y)),y,x^2/4-1,2-x)

 

ans =

 

- sin(x^2/4 - 1) - sin(x - 2) - sin(x)*(x - 2) - sin(x)*(x^2/4 - 1)

 

>> int((ans),x,-6,2)

 

ans =

2*sin(6) - 2*sin(2) + sin(1)^2 - sin(3)^2 + 2*sin(4)^2 + 2^(1/2)*pi^(1/2)*sin(1)*fresnelC(2^(1/2)/pi^(1/2)) - 2^(1/2)*pi^(1/2)*sin(1)*fresnelC(-(3*2^(1/2))/pi^(1/2)) + 2^(1/2)*pi^(1/2)*fresnelS(2^(1/2)/pi^(1/2))*(2*sin(1/2)^2 - 1) - 2^(1/2)*pi^(1/2)*fresnelS(-(3*2^(1/2))/pi^(1/2))*(2*sin(1/2)^2 — 1)

VI.

>> x=sym('x');

>> F = (exp(2*x))

 

F =

 

exp(2*x)

>> taylor(F,10,0)

 

ans =

 

(4*x^9)/2835 + (2*x^8)/315 + (8*x^7)/315 + (4*x^6)/45 + (4*x^5)/15 + (2*x^4)/3 + (4*x^3)/3 + 2*x^2 + 2*x + 1

F=log(x)

 

F =

 

log(x)

 

>> taylor(F,10,1)

 

ans =

 

x - (x - 1)^2/2 + (x - 1)^3/3 - (x - 1)^4/4 + (x - 1)^5/5 - (x - 1)^6/6 + (x - 1)^7/7 - (x - 1)^8/8 + (x - 1)^9/9 – 1

VII.

syms n

>> symsum(1/sqrt(n)*log(n+1/n-1),2,10)

 

ans =

log(13/4)/2 + log(73/9)/3 + (2^(1/2)*log(3/2))/2 + (3^(1/2)*log(7/3))/3 + (5^(1/2)*log(21/5))/5 + (6^(1/2)*log(31/6))/6 + (7^(1/2)*log(43/7))/7 + (8^(1/2)*log(57/8))/8 + (10^(1/2)*log(91/10))/10

>> syms x

>>

>> F=1/x^2-4*x+5

 

F =

 

1/x^2 - 4*x + 5

>> symsum(F,1,inf)

 

ans =

 

NaN

 

VIII.

>> syms x

>> solve('2*(sin(x))^2-3*sin(x)+1=0')

 

ans =

 

    pi/2

    pi/6

(5*pi)/6

>> double(ans)

ans =

   1.5708

   0.5236

   2.6180

 

solve('sqrt(x+3)-sqrt(2*x-1)=sqrt(3*x-2)')

 

ans =

 

1

IX.

>> syms x y

>> dsolve('Dy=y^2/x^2-2')

 

ans =

 

                                 2^(1/2)*x

                                -2^(1/2)*x

-2^(1/2)*x*tan(2^(1/2)*x*(C7 – t/x^2)*i)*i

>> dsolve('Dy=x*y-y/x+1=x','y(1)=0')

 

ans =

 

-(x - (x*exp((t*(x^2 - 1))/x))/exp((x^2 - 1)/x))/(x^2 – 1)

X.

>> factor(12587)

ans =

   41   307

factor(25873)

ans =

      25873

%простое число

factor(89654)

ans =

          2          23        1949

XI.

>> syms x y z

>> factor(x^2+2*x*y+2*y*z-z^2)

 

ans =

 

(x + z)*(x + 2*y – z)

>> factor(x^4+x^(2)*y^(2)+y^4)

 

ans =

 

(x^2 - x*y + y^2)*(x^2 + x*y + y^2)

>> clear all

>> syms a b c

>> factor(a^3+b^3+c^3-3*a*b*c)

 

ans =

 

(a + b + c)*(a^2 - a*b - a*c + b^2 - b*c + c^2)

 

XII.

>> syms a b z

simplify(a^6-b^6/a^2-b^2-a^6+b^6/a^2+b^2)

 

ans =

 

0

>> simplify((z^2-2)*(z^2+2)+((z^2+1)^2)-(z^2-1)+8)

 

ans =

 

2*z^4 + z^2 + 6

XIII.

>> syms a x

>> S = ((a^2+1/2*a))^5;

>> T = ((5*x^2+4*x-4))^4;

>> expand(S)

 

ans =

a^10 + (5*a^9)/2 + (5*a^8)/2 + (5*a^7)/4 + (5*a^6)/16 + a^5/32

 

>> expand(T)

ans =

625*x^8 + 2000*x^7 + 400*x^6 - 3520*x^5 - 1184*x^4 + 2816*x^3 + 256*x^2 - 1024*x + 256

Вывод. В ходе лабораторной работы я научился выполнять символьные вычисления, такие как нахождение производной различных порядков, поиск пределов функций, нахождение определенных и неопределенных интегралов и т.д.


 

А также другие работы, которые могут Вас заинтересовать

53454. Кристаллическое строение вещества 711 KB
  Кристаллическая решётка — вспомогательный геометрический образ, вводимый для анализа строения кристалла. Решётка имеет сходство с канвой или сеткой, что даёт основание называть точки решётки узлами. Решёткой является совокупность точек, которые возникают из отдельной произвольно выбранной точки кристалла под действием группы трансляции
53455. Інтернет технологія Веб-квест 38.5 KB
  Webквестом називається спеціальним чином організований вид дослідницької діяльності для виконання якої учні здійснюють пошук інформації в мережі Інтернет за вказаними адресами. Щоб дана робота була максимально ефективною webквест спеціальним чином організована webсторінка повинен містити наступні частини: введення в якому описуються терміни проведення і задається початкова ситуація; цікаве завдання яке можна реально виконати; набір посилань на ресурси мережі необхідні для виконання завдання. Деякі але...
53456. Классный час «Безопасный интернет» 160.5 KB
  Ведущий1 С одной стороны Интернет прочно вошел в наш обиход и очень облегчает поиск любой информации. С другой стороны есть люди которые считают что Интернет бич нового тысячелетия. Давайте разберемся что же такое Интернет на самом деле.
53457. Суд над Інтернетом. Internet: глобальне добро або зло? 142 KB
  Вчитель виконує роль судді в диспуті сторін, який незалежно і аргументовано буде приймати, або відкидати доводи, що приводяться, і стежити за тим, щоб одні і ті ж аргументи не повторювалися в різному формулюванні, і за тим, щоб дискусія була в цивілізованих рамках.
53458. Інтернет: за і проти! 119.5 KB
  Обладнання: плакат Основні правила спілкування плакат №1 із зображенням компютера плакат №2 із зображенням компютера підключеного до мережі Інтернет; запис на дошці; малюнки учнів; памятки картки зображення Золотої рибки ілюстрація мікрофон тощо. За часів сьогодення коли особливого значення набуває інформація вже ніхто не заперечує що компютер увійшов до різних сфер сучасного життя і...
53459. The Internet and Social Networking Sites 115.5 KB
  A social network is a social structure made up of individuals (organizations) called “nodes”, which are tied (connected) by one or more specific types of interdependency, such as friendship, kinship, common interest, financial exchange, dislike, sexual relationships, or relationships of beliefs, knowledge or prestige.
53460. У Інтернет–клубі 97.5 KB
  Мета: повторити і поглибити знання учнів про дієслово як частину мови, його(ЇЇ) граматичні ознаки; виробляти вміння розпізнавати дієслова серед інших частин мови; розвивати зв’язне мовлення, пам’ять, мислення; вчити учнів працювати з прикладними програмами; виховувати інформаційну культуру, любов до рідної мови.
53461. Винаходи. Досягнення науковців 33 KB
  Good morning, boys and girls! Today we’ll continue to work with the topic “Inventions and gadgets”. You have already done exercises and spoken about it with your teacher and now you’ll show your abilities. At this lesson we’ll revise all the vocabulary on the topic; we shall practice listening, reading, speaking and writing skills. Of course, we’ll make predictions using Future Indefinite and “to be going to…”.
53462. Оптимизация процедуры Heap_sort, особенности 19.42 KB
  ирамидальная сортировка (англ. Heapsort, «Сортировка кучей») — алгоритм сортировки, работающий в худшем, в среднем и в лучшем случае (то есть гарантированно) за Θ(n log n) операций при сортировке n элементов