19459

Символьные вычисления

Лабораторная работа

Информатика, кибернетика и программирование

В ходе лабораторной работы я научился выполнять символьные вычисления, такие как нахождение производной различных порядков, поиск пределов функций, нахождение определенных и неопределенных интегралов и т.д.

Русский

2014-03-24

37.15 KB

2 чел.

Лабораторная работа 2

«Символьные вычисления»

Задание

  1.    Найти пределы функций:
       
  2.  Найти первую  и вторую  производные функций:
      

  1.  Найти неопределенный интеграл:
     
  2. Вычислить интеграл:
  3. Вычислить двойной интеграл:
  4.  Разложить в ряд Тейлора и Маклорена выражения:
    y=ln(x) в окрестности точки х=1;
    y=e2x  в окрестности точки х=0
  5.  Вычислить сумму ряда:
  6.  Решить уравнения:
     
  7.  Решить дифференциальные уравнения:
  8.  Разложить на множители числа: 12587, 25873, 89654;
  9.   Разложить на множители выражения:

  1.  Упростить выражения:
  2.  Расширить выражения:

Код программы и результат ее выполнения

I.

>> syms x

>> limit(sqrt(1+x)-sqrt(1-x)/3*x)

 

ans =

 

1

>> limit(1-cos(x)/5*x^2,1)

 

ans =

 

1 – cos(1)/5

II.

diff(2*sqrt(4*x+3))

 

ans =

 

4/(4*x + 3)^(1/2)

>> diff(2*sqrt(4*x+3),2)

 

ans =

 

-8/(4*x + 3)^(3/2)

diff(log(sin(2*x+5)))

 

ans =

 

(2*cos(2*x + 5))/sin(2*x + 5)

diff(log(sin(2*x+5)),2)

 

ans =

 

- (4*cos(2*x + 5)^2)/sin(2*x + 5)^2 – 4

%3 пример, добавил ф-ю с упрощением ответа

>> f = @ (ans) simplify(ans)

f =

   @(ans)simplify(ans)

>> diff(x^(sin(x)))

 

ans =

 

x^(sin(x) - 1)*sin(x) + x^sin(x)*cos(x)*log(x)

f(ans)

 

ans =

 

x^(sin(x) - 1)*(sin(x) + x*cos(x)*log(x))

 

>> diff(x^(sin(x)),2)

 

ans =

 

x^(sin(x) - 1)*cos(x) + sin(x)*(x^(sin(x) - 2)*(sin(x) - 1) + x^(sin(x) - 1)*cos(x)*log(x)) + cos(x)*log(x)*(x^(sin(x) - 1)*sin(x) + x^sin(x)*cos(x)*log(x)) + (x^sin(x)*cos(x))/x - x^sin(x)*log(x)*sin(x)

 

>> f(ans)

 

ans =

 

x^(sin(x) - 2)*(x^2*cos(x)^2*log(x)^2 - x^2*log(x)*sin(x) + 2*x*cos(x)*log(x)*sin(x) + 2*x*cos(x) + sin(x)^2  sin(x))

>> syms x

>> F = (exp(cos(x))+3)^2

 

F =

 

(exp(cos(x)) + 3)^2

 

>> diff(F)

 

ans =

 

-2*exp(cos(x))*sin(x)*(exp(cos(x)) + 3)

 

>> diff(F,2)

 

ans =

 

2*exp(2*cos(x))*sin(x)^2 - 2*exp(cos(x))*cos(x)*(exp(cos(x)) + 3) + 2*exp(cos(x))*sin(x)^2*(exp(cos(x)) + 3)

 

>> simplify(ans)

 

ans =

 

-2*exp(cos(x))*(3*cos(x) - 3*sin(x)^2 + exp(cos(x))*cos(x) - 2*exp(cos(x))*sin(x)^2)

 

III.

int((sin(x))^3/cos(x)^1/4)

 

ans =

 

- sin(x)^2/8 – log(cos(x))/4

IV.

>> int(1/x^2+2*x+2,x,-inf,inf)

 

ans =

 

NaN

 

>> isnan(ans)

ans =

    1

V.

>> int((int(sin(x)+cos(y),y,x^2/4-1,2-x)),x,-6,2)

ans =

2*sin(6) - 2*sin(2) + sin(1)^2 - sin(3)^2 + 2*sin(4)^2 + 2^(1/2)*pi^(1/2)*sin(1)*fresnelC(2^(1/2)/pi^(1/2)) - 2^(1/2)*pi^(1/2)*sin(1)*fresnelC(-(3*2^(1/2))/pi^(1/2)) + 2^(1/2)*pi^(1/2)*fresnelS(2^(1/2)/pi^(1/2))*(2*sin(1/2)^2 - 1) - 2^(1/2)*pi^(1/2)*fresnelS(-(3*2^(1/2))/pi^(1/2))*(2*sin(1/2)^2 – 1)

%2 вариант, результат совпадает

int((sin(x)+cos(y)),y,x^2/4-1,2-x)

 

ans =

 

- sin(x^2/4 - 1) - sin(x - 2) - sin(x)*(x - 2) - sin(x)*(x^2/4 - 1)

 

>> int((ans),x,-6,2)

 

ans =

2*sin(6) - 2*sin(2) + sin(1)^2 - sin(3)^2 + 2*sin(4)^2 + 2^(1/2)*pi^(1/2)*sin(1)*fresnelC(2^(1/2)/pi^(1/2)) - 2^(1/2)*pi^(1/2)*sin(1)*fresnelC(-(3*2^(1/2))/pi^(1/2)) + 2^(1/2)*pi^(1/2)*fresnelS(2^(1/2)/pi^(1/2))*(2*sin(1/2)^2 - 1) - 2^(1/2)*pi^(1/2)*fresnelS(-(3*2^(1/2))/pi^(1/2))*(2*sin(1/2)^2 — 1)

VI.

>> x=sym('x');

>> F = (exp(2*x))

 

F =

 

exp(2*x)

>> taylor(F,10,0)

 

ans =

 

(4*x^9)/2835 + (2*x^8)/315 + (8*x^7)/315 + (4*x^6)/45 + (4*x^5)/15 + (2*x^4)/3 + (4*x^3)/3 + 2*x^2 + 2*x + 1

F=log(x)

 

F =

 

log(x)

 

>> taylor(F,10,1)

 

ans =

 

x - (x - 1)^2/2 + (x - 1)^3/3 - (x - 1)^4/4 + (x - 1)^5/5 - (x - 1)^6/6 + (x - 1)^7/7 - (x - 1)^8/8 + (x - 1)^9/9 – 1

VII.

syms n

>> symsum(1/sqrt(n)*log(n+1/n-1),2,10)

 

ans =

log(13/4)/2 + log(73/9)/3 + (2^(1/2)*log(3/2))/2 + (3^(1/2)*log(7/3))/3 + (5^(1/2)*log(21/5))/5 + (6^(1/2)*log(31/6))/6 + (7^(1/2)*log(43/7))/7 + (8^(1/2)*log(57/8))/8 + (10^(1/2)*log(91/10))/10

>> syms x

>>

>> F=1/x^2-4*x+5

 

F =

 

1/x^2 - 4*x + 5

>> symsum(F,1,inf)

 

ans =

 

NaN

 

VIII.

>> syms x

>> solve('2*(sin(x))^2-3*sin(x)+1=0')

 

ans =

 

    pi/2

    pi/6

(5*pi)/6

>> double(ans)

ans =

   1.5708

   0.5236

   2.6180

 

solve('sqrt(x+3)-sqrt(2*x-1)=sqrt(3*x-2)')

 

ans =

 

1

IX.

>> syms x y

>> dsolve('Dy=y^2/x^2-2')

 

ans =

 

                                 2^(1/2)*x

                                -2^(1/2)*x

-2^(1/2)*x*tan(2^(1/2)*x*(C7 – t/x^2)*i)*i

>> dsolve('Dy=x*y-y/x+1=x','y(1)=0')

 

ans =

 

-(x - (x*exp((t*(x^2 - 1))/x))/exp((x^2 - 1)/x))/(x^2 – 1)

X.

>> factor(12587)

ans =

   41   307

factor(25873)

ans =

      25873

%простое число

factor(89654)

ans =

          2          23        1949

XI.

>> syms x y z

>> factor(x^2+2*x*y+2*y*z-z^2)

 

ans =

 

(x + z)*(x + 2*y – z)

>> factor(x^4+x^(2)*y^(2)+y^4)

 

ans =

 

(x^2 - x*y + y^2)*(x^2 + x*y + y^2)

>> clear all

>> syms a b c

>> factor(a^3+b^3+c^3-3*a*b*c)

 

ans =

 

(a + b + c)*(a^2 - a*b - a*c + b^2 - b*c + c^2)

 

XII.

>> syms a b z

simplify(a^6-b^6/a^2-b^2-a^6+b^6/a^2+b^2)

 

ans =

 

0

>> simplify((z^2-2)*(z^2+2)+((z^2+1)^2)-(z^2-1)+8)

 

ans =

 

2*z^4 + z^2 + 6

XIII.

>> syms a x

>> S = ((a^2+1/2*a))^5;

>> T = ((5*x^2+4*x-4))^4;

>> expand(S)

 

ans =

a^10 + (5*a^9)/2 + (5*a^8)/2 + (5*a^7)/4 + (5*a^6)/16 + a^5/32

 

>> expand(T)

ans =

625*x^8 + 2000*x^7 + 400*x^6 - 3520*x^5 - 1184*x^4 + 2816*x^3 + 256*x^2 - 1024*x + 256

Вывод. В ходе лабораторной работы я научился выполнять символьные вычисления, такие как нахождение производной различных порядков, поиск пределов функций, нахождение определенных и неопределенных интегралов и т.д.


 

А также другие работы, которые могут Вас заинтересовать

17181. Ряды динамики 404.5 KB
  Ряды динамики. Несопоставимость в рядах динамики вызывается с различными причинами. 1 Разновидность показаний времени 2 Неоднородность состава изучаемых совокупностей во времени. 3 Изменения в методике первичного учета и обобщения исходной информации. 4 различия...
17182. СТАТИСТИЧЕСКАЯ СВОДКА И ГРУППИРОВКА ДАННЫХ 97 KB
  Тема 3. СТАТИСТИЧЕСКАЯ СВОДКА И ГРУППИРОВКА ДАННЫХ. Задачи сводки и ее содержание Статистическая сводка это научно организованная обработка материалов статистического наблюдения. Цель сводки получение на основе сведенных материалов обобщающих статистических ...
17183. Средние величины. Виды средних и методы их расчета 709.5 KB
  Средние величины. Наиболее распространенной формой статистических показателей используемой в социальноэкономических исследованиях является средняя величина представляющая собой обобщенную количественную характеристику признания в статистической совокупнос
17184. СТАТИСТИЧЕСКОЕ НАБЛЮДЕНИЕ 25 KB
  Тема 2. СТАТИСТИЧЕСКОЕ НАБЛЮДЕНИЕ Статистическая информация Слово информация в переводе с латинского языка означает осведомленность давать сведения о чемлибо. Статистическая информациястатистические данные первичный статистический материал формирующи...
17185. ИННОВАЦИОННЫЙ МЕНЕДЖМЕНТ 384.82 KB
  ИННОВАЦИОННЫЙ МЕНЕДЖМЕНТ УЧЕБНИК под редакцией Действительного члена международной Академии информатизации доктора экономических наук профессора Ильенковой С. Д. Москва 1997 Инновационный менеджмент. Учебник / Под ред.
17186. Капитализм, социализм и демократия 968.59 KB
  Йозеф Шумпетер. Капитализм социализм и демократия Часть первая. МАРКСИСТСКАЯ ДОКТРИНА Пролог Глава I. Маркс пророк Глава II. Маркс социолог Глава III. Маркс экономист Глава IV. Маркс учитель Часть вторая. МОЖЕТ ЛИ КАПИТАЛИЗМ ВЫЖИТЬ П...
17187. Кожные и венерические болезни 600.43 KB
  Кожные и венерические болезни Иванов О.Л. Глава I ИСТОРИЯ ДЕРМАТОВЕНЕРОЛОГИИ Кожные и венерические болезни относятся к древнейшей патологии рода человеческого и сопутствуют всем этапам его развития приобретая иногда характер своеобразных эпидемий. Первые ...
17188. ТРИАДОЛОГИЯ Л.П.КАРСАВИНА НА МАТЕРИАЛЕ ТРАКТАТА «О ЛИЧНОСТИ» 58.08 KB
  К.А. Махлак ТРИАДОЛОГИЯ Л.П.КАРСАВИНА НА МАТЕРИАЛЕ ТРАКТАТА О ЛИЧНОСТИ Говоря о триадологии мы в нашем контексте с самого начала должны различать два момента.. Прежде всего есть триадология как отдел святоотеческого богословия триадология учение о Православной...
17189. КРИТИКА ТЕОРИИ ЛИЧНОСТИ КАК СУБЪЕКТА ИСТОРИИ В ИСТОРИОСОФИИ Л.П. КАРСАВИНА 143.53 KB
  Т.А. Туровцев КРИТИКА ТЕОРИИ ЛИЧНОСТИ КАК СУБЪЕКТА ИСТОРИИ В ИСТОРИОСОФИИ Л.П. КАРСАВИНА Представляется что одной из существенных методологических ошибок русской религиознофилософской мысли оказывается неразличение понятий. Это может касаться как исходно заяв