19494

Интегрированная система автоматизации предприятия

Доклад

Информатика, кибернетика и программирование

Интегрированная система автоматизации предприятия В современном промышленном производстве все большее значение приобретает возможность оперативного доступа к достоверной и точной информации из любой точки управления производством поскольку это определяющим обр...

Русский

2013-07-12

45 KB

20 чел.

Интегрированная система автоматизации предприятия

В современном промышленном производстве все большее значение приобретает возможность оперативного доступа к достоверной и точной информации из любой точки управления производством, поскольку это определяющим образом влияет на эффективность работы предприятия, включая производительность труда, качество и конкурентоспособность выпускаемой продукции.

Эта задача решается путем создания интегрированной многоуровневой распределенной автоматизированной системы управления (АСУ). Интегрированная система автоматизации предприятия может быть представлена в виде 5-уровневой пирамиды (рис.1):

Рис.1. Уровни интегрированной системы автоматизации производства

Первый уровень, уровень ввода-вывода (I/O), включает набор датчиков и исполнительных устройств, встраиваемых в конструктивные узлы технологического оборудования и предназначенных для сбора первичной информации и реализации исполнительных воздействий.

Современные интеллектуальные датчики выполняют, кроме процесса измерения, преобразования измеряемых сигналов в типовые аналоговые и цифровые значения, самодиагностику своей работы, дистанционную настройку диапазона измерения, первичную обработку измерительной информации, иногда еще ряд достаточно простых, типовых алгоритмов контроля и управления. Они имеют интерфейсы к стандартным/типовым полевым цифровым сетям, что делает их совместимыми с практически любыми современными средствами автоматизации, и позволяет информационно общаться с этими средствами и получать питание от блоков питания этих средств.

Второй уровень, непосредственное управление, служит для непосредственного автоматического управления технологическими процессами с помощью  промышленных контроллеров и характеризуется следующими показателями:

  •  предельно высокой реактивностью режимов реального времени;
  •  предельной надежностью (на уровне надежности основного оборудования);
  •  возможностью встраивания в основное оборудование;
  •  функциональной полнотой модулей УСО;
  •  возможностью автономной работы при отказах комплексов управления верхних уровней;
  •  возможностью функционирования в цеховых условиях.

В промышленные контроллеры загружаются программы и данные из ЭВМ третьего уровня, уставки, обеспечивающие координацию и управление агрегатом по критериям оптимальности управления технологическим процессом в целом, выполняется вывод на третий уровень управления служебной, диагностической и оперативной информации, т. е. данных о состоянии агрегата, технологического процесса.

Этот уровень управления реализуется, например, на промышленных контроллерах Apacs, DeltaV, Centum, Simatic и др.

Третий уровень, SCADA - уровень (Supervisory Control and Data Acquisition - сбор данных и диспетчерское управление), предназначен для отображения (или визуализации) данных в производственном процессе и оперативного комплексного управления различными агрегатами, в том числе и с участием диспетчерского персонала.

Этот уровень управления должен обеспечивать:

  •  диспетчерское наблюдение за технологическим процессом по его графическому отображению на экране в реальном масштабе времени;
  •  расчет и выбор законов управления, настроек и уставок, соответствующих заданным показателям качества управления и текущим (или прогнозным) параметрам объекта управления;
  •  оперативное сопровождение моделей объектов управления типа «агрегат», «технологический процесс», корректировку моделей по результатам обработки информации от второго уровня;
  •  синхронизацию и устойчивую работу систем типа «агрегат» для группового управления технологическим оборудованием;
  •  ведение единой базы данных технологического процесса;
  •  связь с третьим уровнем.

Отвечая этим требованиям, ЭВМ на третьем уровне управления должны иметь достаточно высокую производительность как при решении задач в реальном масштабе времени, так и при обработке графической информации, обеспечивая работу в реальном времени с базами данных среднего объема и с расширенным набором интеллектуальных видеотерминалов.

Третий уровень управления реализуется на базе специализированных промышленных компьютеров, или в ряде случаев на базе персонального компьютера. Диспетчерский интерфейс реализуется SCADA-системами, например InTouch, iFix, Genesis32, WinCC и др.

Машины третьего уровня должны объединяться в однородную локальную сеть предприятия (типа Ethernet) с выходом на четвертый уровень управления.

Четвертый уровень, уровень управления производством MES (Manufacturing Execution System) - средства управления производством -характеризуется необходимостью решения задач оперативной упорядоченной обработки первичной информации из цеха и передачи этой информации на верхний уровень планирования ресурсов предприятия. Решение этих задач на данном уровне управления обеспечивает оптимизацию управления ресурсами цеха как единого организационно-технологического объекта по заданиям, поступающим с верхнего уровня, и при оперативном учете текущих параметров, определяющих состояние объекта управления. Решение этих задач возлагается обычно на серверы в локальных сетях предприятия.

Пятый уровень, верхний уровень управления определяется как MRP (Manufacturing Resource Planning) и ERP (Enterprise Resource Planning) – планирование ресурсов предприятия.

Задачи, решаемые на этом уровне, в аспекте требований, предъявляемых к ЭВМ, отличаются главным образом повышенными требованиями к ресурсам (например, для ведения единой интегрированной - централизованной или распределенной, однородной или неоднородной - базы данных, планирования и диспетчирования на уровне предприятия в целом, автоматизации обработки информации в основных и вспомогательных административно-хозяйственных подразделениях предприятия: бухгалтерский учет, материально-техническое снабжение и т.п.). Обычно для решения задач данного уровня выбирают универсальные ЭВМ, а также многопроцессорные системы повышенной производительности.

Наиболее известные системы этого уровня предлагаются компаниями SAP, Oracle, BAAN и др.

Исторически сложилось так, что верхний  уровень (АСУП) и нижние уровни (АСУТП) развивались независимо друг от друга и фактически отсутствовал достаточно интеллектуальный интерфейс, который бы их объединял. Это обстоятельство на современном уровне развития промышленности стало тормозящим фактором. Для эффективной работы производственного предприятия и для принятия на верхнем уровне как стратегических, так и тактических решений требуется интеграция всех систем управления производством.

Возможности систем управления производством во многом определяются составом и функциями комплекса инструментальных программных средств, предназначенного для построения автоматизированных систем управления технологическими процессами и для интеграции их как с системами управления производством верхнего уровня, так и со средствами управления нижнего уровня (датчики, исполнительные механизмы и др). Использование такого инструментария обеспечивает возможность создания интегрированных сквозных систем управления производством в реальном масштабе времени.

Важной причиной появления на рынке инструментальных систем для решения задач комплексной автоматизации является низкая эффективность традиционного и необходимость структурированного подхода к построению интегрированных систем управления производством.

Недостатки традиционного построения АСУТП:

  •  множество интерфейсов, сложность и запутанность связей между объектами;
  •  несовместимость форматов данных и структуры сообщений;
  •  сложность внесения изменений, что может вызвать переработку большого объема программ.

Преимущества структурированного подхода:

  •  нормализация данных;
  •  стандартные формы сообщений;
  •  гибкие средства интеграции приложений, включая АСУП.

Такой модульный структурированный подход к построению АСУТП обеспечивает возможность эффективной модернизации системы, облегчает внесение в нее изменений, что в совокупности гарантирует защиту ранее вложенных инвестиций и уменьшение стоимости управления.


ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС

ровень 1

ВВОД-ВЫВОД

Технические средства: датчики/ исполнительные устройства

Уровень 2

НЕПОСРЕДСТВЕННОЕ УПРАВЛЕНИЕ

Технические средства: промышленные контроллеры

Уровень 3

ДИСПЕТЧЕРСКОЕ УПРАВЛЕНИЕ

ТЕХНОЛОГИЧЕСКИМ ПРОЦЕССОМ

Технические средства: IBM PC, SCADA - системы

Уровень 4

УПРАВЛЕНИЕ ПРОИЗВОДСТВОМ (MES)

Уровень 5

ПЛАНИРОВАНИЕ РЕСУРСОВ

ПРЕДПРИЯТИЯ, ERP - системы


 

А также другие работы, которые могут Вас заинтересовать

34339. Фосфорная кислота 24 KB
  Н3РО4 безводная фосф кислота представляет собой бесцветное вещество плавящиеся при температуре 42. Однако на практике имеют дело с жидкой Н3РО4 что объясняется склонностью Н3РО4 к переохлаждению при темп 121С При небольшом переохлаждении она представляет собой густую сиропоподобную жидкость плотностью 188 г см^3 При нагревании водные растворы ортофосф кислоты теряют воду образуя пирафосфорная а затем метофосф кислота. Безводная ортофосф кислота очень агрессивна.
34340. Особенности производства калийных удобрений 29 KB
  Выделение хлористого калия из сильвинитовых руд может быть основано на различии механических физических или химических свойств составляющих компонентов. Переработка сильвинитов для получения хлористого калия по галургическому методу основана на физикохимических особенностях системы NCl КС1 Н2О. Эта особенность системы NCl КС1 Н2О используется для производства хлористого калия из сильвинитов по галургическому методу. Рационально построенная схема производства хлористого калия из сильвинита должна учитывать следующие технологические...
34341. Фосфорные минеральные удобрения 24 KB
  Фосфорные минеральные удобрения Фосф. К фосфорным удобрениям относятся простой и двойной суперфосфат принадлежащие к классу водорастворимых удобрений и комплексные удобрения. Фосфор вносят в почву и с помощью сложного удобрения аммофоса. Фосфорные удобрения получают как физическими так и химическими методами.
34342. Технология производства и экономическая эффективность выпуска и использования пластмасс 30.5 KB
  Технология производства и экономическая эффективность выпуска и использования пластмасс. Изделия из пластмасс наиболее часто получают методами горячего прессования литья под давлением экструзии выдувания обработки резанием. Прессование применяется главным образом для переработки термореактивных пластмасс. термореактивная смола переводится в плавкое состояние при котором и происходит вторая стадия процесса формование; затем происходит реакция поликонденсации и пластмасса отверждается становясь неплавкой и нерастворимой.
34343. Сырьевые материалы и основы производства резины 28 KB
  Резину изготавливают с помощью вулканизации. В результате вулканизации каучук превращается в прочную эластичную упругую массу резину. В результате вулканизации молекулы каучука сливаются между собой дисульфидными мостиками в одну трехмерную макромолекулу. Большую роль играют так называемые ускорители вулканизации органические соединения содержащие серу или азот меркаптобензтиазол дифенилгуанидин и др.
34344. Основные свойства и назначения природных и искусственных строительных материалов 21 KB
  Основные свойства и назначения природных и искусственных строительных материалов. Основные свойства строительных материалов можно разделить на несколько групп. К 1ой группе относятся физические свойства материалов: плотность и пористость. Ко 2й свойства характеризующие устойчивость материала к воздействию воды и низких температур: водопоглощение влажность влагоотдача гигроскопичность водопроницаемость водо морозостойкость.
34345. Классификация и свойства керамических материалов 21.5 KB
  Классификация и свойства керамических материалов Керамические строительные материалы это искусственные каменные изделия получаемые из глиняных масс с добавками или без добавок других материалов путем формования и последующего обжига. Керамические материалы и изделия классифицируются по различным признакам. В зависимости от структуры керамические материалы разделяют на две основные группы: Плотные спекшиеся имеющие блестящий раковистый излом не пропускающие воду с водопоглощением менее 5 клинкерный кирпич для мощения дорог плитки для...
34346. Технология производства керамического кирпича 23 KB
  Технология производства керамического кирпича Несмотря на обширный ассортимент разнообразие форм и свойств керамических изделий основные этапы их производства являются общими и включают следующие стадии: Карьерные работы добыча транспортирование и хранение запаса глин подготовку глиняной массы формование изделий сушку отформованных изделий обжиг высушенных изделий обработку изделий глазурование ангобирование и прочее и упаковку. Формование изделий осуществляется преимущественно на прессах: при первом способе подготовке глиняной...
34347. Основные свойства, классификация и назначение стеклянных изделий 22 KB
  Материалы и изделия из стекла применяемые в строительстве в зависимости от назначения разделяются на следующие группы: Материалы для заполнения проемов зданий и сооружений наиболее обширная группа строительных материалов из стекла включающая листовые стекла различных видов и стеклопакеты; в свою очередь листовое стекло подразделяется на листовое оконное витринное полированное и неполированное армированное узорчатое увиолевое трехслойное закаленное и др.; Материалы для строительных конструкций профильное стекло стеклоблоки;...