19513

Статическое идеальное звено

Доклад

Информатика, кибернетика и программирование

Статическое идеальное звено. Идеальное статическое звено: Усилительное или пропорциональное Эго уравнение и в статике и в динамике имеет вид: Таким образом сигнал усилительного звена в любой момент времени равен входному сигналу умноженного на постоянный коэффиц...

Русский

2013-07-12

6.88 MB

6 чел.

Статическое идеальное звено.

Идеальное статическое звено: (Усилительное или пропорциональное)

Эго уравнение и в статике и в динамике имеет вид:

Таким образом сигнал усилительного звена в любой момент времени равен входному сигналу умноженного на постоянный коэффициент, его передаточная функция определяется из уравнения после преобразования по Лапласу:     . Заменив передаточную функцию оператор Лапласа на  получим частотную характеристику.

АФХ: ;        АЧХ :;       ФЧХ: ;

Таким образом характеристики усилительного звена не зависит от частоты при чем ФЧХ = 0   усилительное звено не изменяя фазу гармонического сигнала а изменяя его амплитуду в k раз.

3. Кривая разгона

Это звено идеализация реальных звеньев так как в действительности не одно звено не в состоянии равномерно пропускать все частоты от 0 до , а имеет определенную полосу частот: . Например: реальные электронные усилители обладают некоторой инерционнальностью и их характеристики в действительности имеют вид

Примеры усилительных звеньев:

Механический редуктор без инерционный усилитель делитель напряжения, рычажное соединение, первичное преобразование, датчики и так далее.

Логарифмическая характеристика:

Для идеального звена:

Статическое звено 1го порядков или апериодическая.

Линейное дифференциальное уравнение такого звена имеет вид:

, где Т – const времени, k – коэффициент усиления.

Примером такого звена может служить любая цепочка, включающая в себя сопротивление, и емкость независимо от их физической природы.

Постоянная времени T зависит от сопротивления и емкости звена и характеризует инерционность звена (чем больше T  тем больше инертность)

     

Частотные характеристики

АФХ:

АЧХ:

ФЧХ:

АЧХ апериодического звена на нулевой частоте равна коэффициенту усиления k  с увеличением частоты, монотонно убывает

ФЧХ с увеличением частоты 0 до изменяется 0 до . Следовательно годограф целиком лежит в IV квадрате и представляет собой полуокружность в центре , с диаметром .

Временные характеристики:

Уравнение кривой рядом получим из передаточной функции следующим образом

     

- уравнение разгона оператора Лапласа.

Аналогично находим импульсную переходную характеристику:  

Если эти характеристики найдены экспериментально, то по ним можно определить k и T и таким образом получить уравнение звена.

Величина T const определяется инерциональность звена, чем она больше тем больше длительность переходного процесса, на практике за длительность переходного процесса принимают время которое прошло от начала процесса до момента когда выходная координата достигается 95% своего конечного значения. В данном случае это время ЗТ

Логарифмическая характеристика

При малом значении частоты :

Соответственно характеристика будет представлять собой прямую параллельную оси абсциссе и отстающая от него

Это 1ая асимптота которая стремится к графику ЛАЧХ  при . С другой стороны при больших частотах

 в этом случае характеристика представляет собой прямую. “\”

Эта линия является 2ой асимптотой которая стремится к графику ЛАЧХ при . Обе асимптоты пересекаются на частоте: ,

Частота называется сопрягающей касательной.

Таким образом расхождение между истиной и ассимтотичной  ЛАЧХ составляет 3Дб, поэтому на практике при построения ЛАЧХ периодических звеньев используют ассимтоты.  

Примеры апериодических звеньев 1го порядка: генератор const I, двигатель любого типа, резервуар с газом или жидкостью, нагревательная печь, термопара, гидропневмоусилители и так далее.

Статическое колебательное звено 2го порядка.

здесь -const времени, k – коэффициент усиления.

В соответствии с этим уравнением звено будет колебательным в том случаи, если соотношение , если это неравенство не выполняется звено будет апериодическим 2го порядка.

Уравнение статики имеет тот же вид что и для всех:      

Частотные характеристики АФХ:   АЧХ:  ФЧХ:

Как видно для формул АЧХ при малых значениях :

Наблюдается некоторое увеличение АЧХ.

Мах появляется на частоте , в предельном случае , на этой частоте появляется резонансный пик.

Временные характеристики.

По экспериментально снятым кривым так же можно определить значение

Логарифмическая характеристика.

Асимптотическая ЛАХ представляет собой ломанную линию, состоящую из 2х асимптот одна из которых параллельна оси абсциссе и отстает от нее на расстояние , 2ая имеет наклон -40 дц/дек . Точка пересечения соответствует частоте

Уравнение для 1ой асимптоты получим из (*) при условии . В этом случае  

Уравнение 2ой асимптоты также получается из (*), при условии

Введем коэффициенты

Если , то реальная логарифмическая характеристика можно заменить ассимтотической.

Колебательные звенья это система способна накапливать 2 вида энергии кинетическую и потенциальную энергию. Процесс колебания сопровождается переходом от одного вида к  другому.  При этом время  характеризует способность системы демпфировать (тормозить) колебания, а время  способность раскачивать.

Примеры колебательных звеньев:

Электрический резонанс контур включает в себя R L C; Электродвигатель при достаточно большой постоянной времени якорь, упруго механической передачи.

Статическое звено 2го порядка (Апериодическая 2го порядка)

Такое звено описывается уравнением, аналогичным колебательным при условии. Обобщенный вид уравнения 2го порядка следующее: .

Апериодическое звено 2го порядка можно представить как цепочку из 2х первых звеньев I порядка, с постоянными  и  и коэффициентом усиления k и 1.

Отсюда

в операторной форме

- дифференциальное уравнение.

Частотные характеристики.

АФХ:     

АЧХ:

ФЧХ:

Как следует из ФЧХ которая для положительных частот изменяется в пределах 0 до . Годограф АФХ должен лежать в III и IV квадрате. Причем модуль с увеличением частоты от 0 до , монотонно убывает от k до 0. на рис. пунктиром показано частотные характеристики 1го порядка с коэффициентом усиления k и постоянным значением . Как видно из рисунков добавление еще одного звена уменьшает значение модуля и увеличивает значение фазы.

Уравнение кривой разгона (переходной характеристики)  в операторной форме имеет вид.

Оригиналом данного уравнения будет следующие выражение:  где ;  ; ; график  представляет собой неколебательную кривую точкой перегиба стремящиеся к k.

Уравнение импульса переходной характеристики  получим дифференцируя переходную характеристику:

Логарифмическая характеристика предполагает собой ломаную из 3 асимптот.

  

Консервативное звено  

Является частным случаем статического звена 2го опорядка у которого

Консервативное звено отражает  идеальный случай когда в рассеиванием энергии в звене можно пренебречь.

Переходной характеристикой такого звена имеет вид незатухающих колебаний.

    

Уравнение такого звена:      

АФХ:      АЧХ:        ФЧХ:

Логарифмическая характеристика.


 

А также другие работы, которые могут Вас заинтересовать

20988. Взаимодействие прикладных программ с помощью транспортных протоколов сети Интернет 862.5 KB
  Необходимо создать приложение (клиент) , который мог бы отправлять сообщения серверу при помощи транспортных протоколов (TCP и UDP). Клиент должен содержать файлы настроек для возможности задания порта и IP адреса сервера.
20989. Разработка сайта 285.5 KB
  FTPHostHOST USER PASSWORD создается соединение с сервером file_dir file_name = os.splitFILE print 'try downlo ad s' FILE if host.isdirfile_dir and host.isfileFILE: проверяется существование файла print 'file is existing download to:' DEST_DIRfile_name host.
20990. Цифрові рекурсивні фільтри 81.21 KB
  КРЕМЕНЧУК 2011 Мета: одержання практичних навичок із синтезу рекурсивних фільтрів Завдання Визначити параметри рекурсивного фільтра відповідно до варіанту навести передавальну функцію фільтра комплексну та у zзображеннях рівняння сигналу на виході фільтра та побудувати частотні характеристики фільтра. Розрахунок РЦФ в пакеті Mathcad Вихідні дані Визначення нормованих цифрових частот: Визначення порядку фільтра Фільтр 21 порядку розрахувати важко тому візьмемо фільтр 4 порядку Визначення передавальної функції цифрового...
20991. Цифрові нерекурсивні фільтри 154.13 KB
  КРЕМЕНЧУК 2011 Мета: набуття практичних навичок із синтезу нерекурсивних фільтрів низької та високої частоти смугового та режекторного фільтрів. Порядок виконання роботи Реалізація фільтру низьких частот: Реалізація фільтру високих частот: Реалізація смугового фільтру: Реалізація режекторного фільтру: Висновок: На даній практичній роботі були здобуті практичні навички із синтезу нерекурсивних фільтрів низької та високої частоти смугового та режекторного фільтрів.
20992. Розробка цифрових нерекурсивних та рекурсивних фільтрів в LabVIEW 146.2 KB
  Розміщуємо на блокдіаграмі експрес ВП DFD. Classical Filter Design Functions → Addons → Digital Filter Design → Filter Design → DFD Classical Filter Design Функції → Додаткові → Проектування цифрових фільтрів → Проектування фільтрів → DFD Класична розробка фільтрів. Рисунок 1 Конфігурація FIR ФНЧ Розміщуємо на блокдіаграмі експрес ВП DFD Filter Analysis Аналіз фільтру Functions → Addons → Digital Filter Design → Filter Analysis → DFI Filter Analysis Функції → Додаткові → Проектування цифрових фільтрів → Аналіз фільтрів →...
20993. Дослідження загальної процедури цифрових фільтрів в LabVIEW 240.66 KB
  розміщуємо три горизонтальні повзункові регулятори Horizontal Pointer Slid' Controls → Express → Numeric Control → Horizontal Pointer Slide Елементи керування → Експрес → Цифровий контроль → Горизонтальний повзунковий регулятор для налаштування частоти сигналів; три графіки осцилограми Waveform Graph для відображення вхідного і відфільтрованого сигналів у часовому і спектральному зображенні. На закладці Scale Шкала змінюємо максимальне значення шкали частоти Найквіста на 4000 Гц у всіх трьох елементах і на закладці Data Range Діапазон...
20994. Синтез цифрових фільтрів в MatLab 418.96 KB
  Баттерворда Режекторний Фільтр: Рисунок 1.1 АЧХ Рисунок 1.2 ФЧХ Рисунок 1.3 АФЧХ Рисунок 1.
20995. Дослідження характеристик цифрових фільтрів у програмі MatLab 297.85 KB
  Для перетворення сигналу з аналогової форми в дискретну застосовуємо блок АЦП. Для графічного відображення результатів роботи застосовуємо блоки Signal Processing Blockset signal Processing Sinks time Scope для відображення часової залежності сигналів та Signal Processing Blockset signal Processing Sinks spectrum Scope для відображення спектру сигналу. Для фільтрації в пакеті Sptool виконуємо наступні дії: В полі Signals виділяємо назву необхідного сигналу Signnoise. Натискуємо кнопку Apply після натиснення якої з'являється діалогове...
20996. Дослідження схем диференційних підсилювачів 268.5 KB
  Подаємо на входи диференційного підсилювача гармонійні сигнали різної амплітуди Uвх1= 2 В Uвх1= 15 В з частотою f = 1 кГц рис.1: Рисунок 1 Сигнали на входах диференційного підсилювача UBИX=54 В .2 зображено два сигнали сигнал з постійною амплітудою є вхідним. Подаємо на входи гармонійні сигнали різної частоти: рис.