19530

Определение настроек регулятора методом расширенных частотных характеристик

Доклад

Информатика, кибернетика и программирование

Определение настроек регулятора методом расширенных частотных характеристик. При изучении условий устойчивости замкнутой системы по критерию Найквиста было отмечено что если разомкнутая система разомкнута и ее АФХ проходит через точку то замкнутая система будет...

Русский

2013-07-12

1.15 MB

68 чел.

Определение настроек регулятора методом расширенных частотных характеристик.

При изучении условий устойчивости замкнутой системы по критерию Найквиста было отмечено что если разомкнутая система разомкнута и ее АФХ проходит через точку  то замкнутая система будет находится на границе устойчивости.

Введение степени колебательности, равносильно введению новой границе устойчивости вместо мнимой оси АОВ:

Тогда по аналогии с критерием Найквиста можно сформулировать условие при котором замкнутая система будет обладать с замкнутой заданной системой.

Если разомкнутая система обладает степенью колебательности не ниже заданной ее РАФХ  проходит через точку , то замкнутая система будет обладать ее заданной степенью колебательности.

  (*)

Полученное уравнение отражает связь между частотными характеристиками объекта и регулятора, вытекающего из условия обеспечения с заданной степенью колебательности.

Частотная характеристика объекта и выбранная степень  калебательности m является заданным условием не известными остается настроечные параметры регулятора, и рабочая частота.

На 1ом этапе определяется настройки регулятора сводятся к решению данной системы. Очевидно что для регулятора 2мя и 3мя настройками эта система имеет бесконечное множество решений. Поэтому только одной степени колебательности недостаточно, для нахождения настроек необходимо введение еще одного критерия, в качестве которого обычно используют интегральный квадратичный критерий, для которого оптимальное значение обеспечивает минимальное значение.

Расширенные настройки П - регулятора совпадают с обычными.

П :                        подставив в (*)  

ПИ :                 

Подставим полученные уравнения в систему (*), получим выражение для настроек  и

     

В этих уравнениях неизвестной величиной остается частота поэтому настройки соответственно степени колебательности может быть . Каждому значению частоты будет соответствовать своя пара настроек.

Если в плоскости настроечными параметрами построить кривые соответствуя различным степеням колебательности.

 

То эти кривые будут разбивать на 2 зоны, нижняя будет соответствовать большим значениям степени колебательности, а верхнее меньшим значением.

Кривая , разбивает на зону устойчивости и неустойчивости.


Сравнив между собой процессы регулирования соответствующим различным точкам на кривой раной колебательности М. В точке 1 отсутствует интегральная составляющая и в процессе регулирования появляется статическая ошибка. В точке 2 интегральная составляющая не значительна, статическая ошибка равна 0, но скорость устранения мала и переходный процесс характеризует затянувшимся хвостом. Увеличение интегральной составляющей сопровождается уменьшением рабочей частоты и ростом динамической ошибки точка 4. Расчет интегрального квадратичного критерия показал что его минимальное значение соответствует точке, не много сдвинутой в право относительно Max. Точка 3 рабочая частота в этой точке определяется

Таким образом методика нахождения настроек ПИ - регулятора сводится к следующему:

1) Расчет расширенных характеристик объекта.

2) Расчет и построение кривой равной колебательности, плоскости настроек  и по формулам (1) и (2).

3) Нахождение по полученному графику рабочей частоты и соответствие ее оптимальных настроек.

ПИД – регулятор

Так же как Пи регулятор имеет две настройки  и , методика расчета аналогична.

        

                   

(*)

С помощью полученных формул из системы (*) выражаем настройки  и :

            

Подставим полученные формулы различных частот строим кривую равной колебательности:

На графике представлены различные переходные процессы с различными значениями настроек.  В точке 1 кривой равной колебательности дифференциальной составляющей , регулятор ведет себя как довольно большой динамической и статической ошибкой. При движении в право по кривой наблюдается уменьшение статической и динамической ошибки. Дальнейшее увеличение настроек , приводит к уменьшению динамической ошибки но растет статическая. Поэтому оптимальными настройками являются соответствующие точке 2 чуть-чуть смещенные относительно max.

У ПИД регулятора 3 параметра настроек  и поэтому, его расчет по методу расширенных частотных характеристик несколько сложнее чем для регулятора с 2мя параметрами.

          

Полученные формулы подставляем в рассмотрение ранее систему откуда выражаем  и: Для ПИД регулятора вместо плоскости параметров мы получим 3х мерное пространство. В этом случае расчет настроек производится следующим образом, задаваясь различными значениями  строят кривые равные колебательности в плоскости  и :

 

Эти графики должны быть аналогичны тем что получили для ПИ – регулятора, поскольку ПИ регулятор это частный случай ПИД регулятора у которого третья настройка ровна нулю. Затем для каждого графика находим оптимальные настройки  и , сравнивая между собой переходные процессы соответственно теми или иными настройками. Выбирают оптимальный для которого интегральный квадратичный критерий будет оптимальным.


С2
I

С2II


 

А также другие работы, которые могут Вас заинтересовать

58280. Склад сучасного настільного персонального компютера 42 KB
  Персона́льний компютер (ПК) — електронна обчислювальна машина, призначена для особистого використання, ціна, розміри та можливості якого задовольняють потреби багатьох людей.
58283. Один і багато. Числа і цифри. Назви цифр: одиниця, двійка, трійка… Підготовка до написання цифр 33.5 KB
  Мета: на основі практичних дій з предметами формувати в учнів вміння лічити предмети; ознайомити з цифрами; показати співвідношення числа й цифри; продовжити роботу над формуванням навички лічби предметів...
58284. Орбитальное Движение Земли 28.5 KB
  Цель: изучить движение орбитальное движение Земли и его влияние на смену времен года Оборудование: мультимедиа аудиопроигрыватель Ход. Рассмотрим движение Земли вокруг Солнца. Нам поможет диктор и Кто будет двигателем Земли К демонстрационному столу с учебником Учебная задача: слушать читать.
58285. Умножение отрицательных чисел и чисел с разными знаками 438 KB
  На верхней грани кубика вариант самостоятельной работы на боковых гранях задания на нижней грани ответы к заданиям но они заклеены цветной бумагой. Задания на гранях...
58286. Лічба предметів. Співвіднесення цифри й числа. Поняття багато, один 32 KB
  Мета: формувати вміння зіставляти число й цифру число й группу предметів; вдосконалювати обчислювальні навички; розвивати увагу критичне мислення. Поняття багато і один Робота з підручником С. Бесіда Чи можна порахувати зірки на небі А дерева в лісі У такому випадку говорять...
58287. Money in Our Life 45.5 KB
  When people make more production they need they wanted to exchange it for something else. So people invented money. We use it to buy and sell goods and make savings. In our land people use hrivnyas and copecks.