19547

Автокорреляция и ее вычисление

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

2 Лекция 16. Автокорреляция и ее вычисление Пусть задана бесконечная последовательность . По ней строится автокорреляционная функция . Эта функция играет огромное значение в при обработке сигналов. Основное назначение отыскание максимумов функции котор

Русский

2013-07-12

342.02 KB

5 чел.

2

Лекция 16. Автокорреляция и ее вычисление

Пусть задана бесконечная последовательность . По ней строится автокорреляционная функция . Эта функция играет огромное значение в при обработке сигналов. Основное назначение - отыскание максимумов функции , которые интерпретируются как аналоги периодов. Из неравенства Коши следует, что . В точках максимума   сдвинутая на  исходная последовательность "похожа" на исходную. В качестве примера рассмотрим фрагмент звукового файла с записью звука "а". Этот сигнал не является периодическим в математическом смысле слова, однако, визуально такая периодичность просматривается. Значения периода находятся по максимумам соответствующей автокорреляционной функции. Найдем преобразование Фурье от . Для непрерывного случая эта задача рассматривалась выше. Положим . Теперь , где  - свертка последовательностей. = . С другой стороны, =. Это означает, что . Если исходная последовательность вещественная, то  и

    (1)

Случай конечной последовательности

При практическом использовании автокорреляционной функции мы имеем дело с конечными последовательностями. Пусть дана последовательность . Определим функцию  ( как обычно, последовательность считается периодической). Повторяя предыдущие рассуждения, получим для конечного преобразования Фурье в вещественном случае аналог (1)

   (2)

Если для заданного  существует схема БПФ, то выгоднее для отыскания значений  сначала найти преобразование Фурье от исходной последовательности, а затем воспользоваться (2) для отыскания значений функции.

В случае конечных последовательностей мы имеем дело с циклической сверткой. Для того, чтобы избавиться от эффекта цикличности, используется следующий прием. Вместо исходной последовательности длины  берется последовательность  длины . Если используются значения , то при их вычислении эффект цикличности не имеет места.

Практическое оценивание частот

В предыдущий рассмотрениях не учитывалась частота выборки  из исходного непрерывного сигнала. Имеем

. Рассматривая последнее выражение как приближение соответствующего интеграла, получим, что данный коэффициент соответствует частоте . При выборе значения  следует учитывать следующее обстоятельство - увеличение  повышает разрешающую способность, но при этом происходит усреднение по длине окна.

Если для оценки периода использована автокорреляционная функция, то максимуму этой функции в точке  отвечает частота