19552

Преобразования Адамара и Хаараара

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

2 Лекция 21. Преобразования Адамара и Хаара Подсчет числа перемен знаков в матрице Адамара Аналогом частоты в базисе Фурье для матриц Адамара является число перемен знаков в строке. Предложение. Для того чтобы найти число перемен знаков в строке с номером...

Русский

2013-07-12

445.63 KB

8 чел.

2

Лекция 21. Преобразования Адамара и Хаара

Подсчет числа перемен знаков в матрице Адамара

Аналогом частоты в базисе Фурье для матриц Адамара является число перемен знаков в строке.

Предложение. Для того, чтобы найти число перемен знаков в строке с номером  в матрице Адамара, нужно сделать следующие операции:

Представить   в двоичной форме

Подсчитать , где  - матрица перехода от двоичного кода к коду Грея

Число перемен знаков в двоичной форме имеет вид .

Доказательство. Для  утверждение проверяется непосредственно. Предположим, что оно справедливо для . Рассмотрим матрицу  и ее строку с номером . Элементы этой строки подсчитываются по формуле , где .

По определению, =

. Положим . Когда  пробегает все значения, знак определяется четностью скалярного произведения вектора  на все коды Грея. Последние изобразим таблицей. Проходя первую половину таблицы, согласно предположению индукции, получим число перемен знаков, имеющее двоичное представление . Столько получится при прохождении второй половины таблицы. Если , то в силу зеркальности, на стыке будет еще одна перемена, в противном случае ее не будет.

При вычислении преобразования Адамара номер коэффициента можно ассоциировать с частотой, однако, не следует думать, что это действительно частота. Для этого достаточно подсчитать преобразование Адамара от .

Быстрое преобразование Адамара.

Пусть имеется вектора . Его преобразование Адамара есть вектор . Вектор  называется спектром Адамара исходного вектора. Обратное преобразование  можно рассматривать как разложение вектора  по столбцам , при этом число перемен знаков в соответствующем столбце рассматривается как аналог частоты. Разобьем вектор , представив его в виде блоков длины . Имеем . Для вычисления блоков можем применить аналогичную формулу. Таким образом реализуется быстрое преобразование Адамара

Преобразование Хаара.

Это преобразование строится на основе матрицы Хаара  порядка . . Введем обозначение . Здесь первая строка состоит из 1, а - матрица размера . Теперь

Здесь 1 и -1 обозначают строки длины . Очевидна ортогональность строк этой матрицы. Множитель  вводят для того, чтобы выровнять длину строк. Особенность матрицы Хаара заключается в том, что в каждой из строк имеется только один переход от 1 к -1. Фактически, преобразование Хаара есть реализация частного случая Wavelet преобразования.

Сжатие сигнала с помощью ортогонального преобразования.

Все рассмотренные выше преобразования могут использоваться для сжатия сигнала. Пусть сигнал представлен вектором . Подсчитываем , используя одно из ортогональных преобразований. В векторе  оставляем лишь часть координат, заменяя остальные нулями. Получаем вектор  и находим . Преимущество ортогонально преобразования заключается в том, что при этом можно оценить погрешность , совпадающую с . Процедура сжатия заключается в сохранении лишь ненулевых коэффициентов вектора . Имея несколько ортогональных преобразований, можем подобрать наиболее подходящее для сжатия данного вектора.


 

А также другие работы, которые могут Вас заинтересовать

22413. Множества. Числовые множества 256 KB
  Множества. Числовые множества План 1. Множества. Подмножества.
22414. Отображения. Числовые функции 326.5 KB
  Отображением f множества X в множество Y называется всякое правило которое любому элементу xX ставит единственный элемент y обозначаемый fx. Бинарным отношением f между множествами X и Y называется любое подмножество множества XY. Бинарное отношение f между множествами X и Y называется отображением множества X в множество Y если для любого элемента xX существует один и только один элемент yY такой что x yf . Отображение f множества X в Y называется также функцией определенной на множестве X со значениями в множестве Y.
22415. Числовая последовательность и ее предел 211.5 KB
  Числовая последовательность и ее предел Числовая последовательность и свойства последовательностей. Числовая последовательность и свойства последовательностей. Числовой последовательность или просто последовательность называется функция f определенная на множестве натуральных чисел N значения которой числа действительные или комплексные. Последовательность обозначаем через ее значения : x1 x2 x3 xn или кратко {xn}.
22416. Предел функции 329.5 KB
  Предел функции Предел функции в точке по Коши и по Гейне. Предел функции на бесконечности. Бесконечно малые и бесконечно большие функции и их свойства. Свойства предела функции.
22417. Україна у Другій Світовій війні та першому повоєнному десятиріччі (1939 – 1955 рр.) 49 KB
  Напередодні Другої світової війни населення Західної України становило близько 7 мли осіб. На всіх цих землях панувала іноземна адміністрація, яка проводила колонізаційну політику. Це викликало обурення українців, призводило до спротиву офіційним властям
22418. Сравнения функций. Свойства функций, непрерывных на отрезке 218.5 KB
  Если предел 1 равен 0 то функция fx называется бесконечно малой более высокого порядка чем gx при x  a а функция gx называется бесконечно малой более низкого порядка чем fx при x  a. Если предел 1 равен   то функция fx является бесконечно малой болей низкого порядка чем gx при x  a а gx функция является бесконечно малой более высокого порядка чем fx при x  a. Если предел 1 равен   то функция является бесконечно большой при x  a. Тогда по свойству бесконечно малых функция бесконечно малая при...
22419. Производная и дифференциал функции одной переменной 224 KB
  Производная и дифференциал функции одной переменной Приращение аргумента и приращение функции. Понятие функции дифференцируемой в точке. Дифференциал функции. Производная функции.
22420. Теоремы о дифференцируемых функциях. Производные и дифференциалы высших порядков 246.5 KB
  Производные и дифференциалы высших порядков Возрастание и убывание функции в точке. Точки экстремума функции. Линеаризация функции. Приближенное вычисление значений функции.
22421. Правила Лопиталя. Формула Тейлора 245 KB
  Формула Тейлора. Формула Тейлора с остаточным членом в форме Пеано. Формула Тейлора с остаточным членом в форме Лагранжа. Разложение основных элементарных функций по формуле Тейлора.