19776

Защита трубопроводов от коррозии

Реферат

Производство и промышленные технологии

101. Основной принцип катодной защиты. Катодная защита рис. 1 защита подземного металлического трубопровода при наложении электрического поля от внешнего источника тока создающего катодную поляризацию на трубопроводе. При этом коррозионному разрушению подвергаетс

Русский

2013-07-17

471 KB

246 чел.

10-1. Основной принцип катодной защиты.

Катодная защита (рис. 1) - защита подземного металлического трубопровода при наложении электрического поля от внешнего источника тока, создающего катодную поляризацию на трубопроводе. При этом коррозионному разрушению подвергается анодное заземление из металлических или неметаллических электропроводных материалов. Такая защита осуществляется при создании защитной разности потенциалов между трубопроводом и окружающим его. грунтом от источника постоянного (или выпрямленного) тока. Разность потенциалов создается станцией катодной защиты (СКЗ).

Рис. 1. Принципиальная схема катодной защиты магистрального трубопровода:

1 — трубопровод;   2 — анодное   заземление (анод); 3 — соединительная электролиния постоянного или выпрямленного тока; 4 — защитное заземление; 5 — источник постоянного или выпрямленного тока; 6 — катодный вывод; 7,8 — точки соответственно подключения катодного вывода и дренажа; I3 — ток катодной защиты

Как следует из схемы катодной защиты, электрический ток, растекающийся с анодного заземления (2) в почву, распространяется по ней и поступает на защищаемый объект (1) – трубопровод, поляризуя его катодно. Поступивший на защищаемый объект ток собирается в точке дренажа (8) и возвращается к своему источнику (5). Максимальный ток в цепи катодной защиты находится в точке подключения источника питания СКЗ (в точке дренажа).

Устройство, включающее СКЗ, анодное заземление и соединительные провода называют катодной установкой с внешним источником тока. СКЗ бывают двух типов: сетевые, питающиеся от действующих или специально сооружаемых ЛЭП, и с местными источниками тока, в качестве которых  используют моторы-генераторы, электродвигатели различных типов термогенераторы и др. СКЗ состоит из понижающего трансформатора, выпрямителя тока, устройств регулировки напряжения и контрольно-измерительных приборов.

Принцип действия катодной защиты  аналогичен процессу электролиза. Под воздействием приложенного электрического поля источника начинается движение полусвободных валентных электронов в направлении анодное заземление — источник тока — защищаемое сооружение. Теряя электроны, атомы металла анодного заземления переходят в виде ион-атомов в раствор электролита, т.е. анодное заземление разрушается. Ион-атомы подвергаются гидратации и отводятся вглубь раствора. У защищаемого же сооружения вследствие работы источника постоянного тока наблюдается избыток свободных электронов, т.е. создаются условия для протекания реакций кислородной и водородной деполяризации, характерных для катода.

При осуществлении электрохимической защиты участка трубопровода, стенка которого более чем на 10 % толщины повреждена коррозией, минимальный защитный потенциал должен быть на 0,05 В отрицательнее.

Минимальный защитный потенциал должен поддерживаться на границе зоны действия станции катодной защиты (СКЗ). Так как значение защитного потенциала убывает с удалением от точки подключения СКЗ (точка дренажа), то максимальный защитный потенциал имеет место в точке дренажа. Чтобы предотвратить разрушение и отслаивание изоляционного покрытия вследствие выделения газообразного водорода, максимальное значение защитного потенциала ограничено. Так, для стального сооружения с битумной или полимерной изоляцией это значение составляет —1,15 В по МСЭ. Когда сооружение не имеет защитного покрытия, максимальное значение защитного потенциала не регламентируется.

В установках катодной защиты используют сосредоточенные, распределенные, глубинные и протяженные анодные заземления. Для уменьшения скорости их растворения электроды анодного заземления устанавливают в коксовую мелочь. Срок службы анодного заземления должен составлять не менее 15 лет.

10-2. Основной принцип протекторной защиты.

Протекторную защиту (рис. 1) от электрохимической коррозии участков магистральных трубопроводов применяют при значительной удаленности их от источников электроснабжения, где применение катодной защиты экономически нецелесообразно, а также в местах неполной защиты участков трубопроводов катодными установками. Протекторные установки, состоящие из протектора, активатора, проводника и контрольно-измерительной колонки, применяют для защиты конусов переходов трубопроводов через железные и шоссейные дороги, конденсат- и водосборников и др. Их присоединяют к защищаемому сооружению металлического протектора (анодного электрода), имеющему более низкий электрохимический потенциал по сравнению с потенциалом металла, защищаемого в данной коррозионной среде.

Рисунок 1. Принципиальная схема протекторной установки.1- трубопровод; 2 – точка дренажа;                                                         3 - изолированный соединительный провод;                                                        4 – протектор; А – анод; К – катод

Протекторная защита трубопроводов основана на принципе работы гальванических пар. При защите подземных металлических объектов с помощью протекторных установок к трубопроводу подключают протектор (анодный электрод), имеющий более низкий электрохимический потенциал, чем потенциал металла трубы. Создаются условия, при которых трубопровод выступает в качестве катода, а протектор в качестве анода, в результате добиваются прекращения коррозионного разрушения трубопровода за счет интенсивного разрушения протектора.

При устройстве протекторной защиты к стальному трубопроводу подключают металлический протектор (4). В результате этого образуется гальванический элемент «труба-протектор», в котором трубопровод является КАТОДОМ, протектор – АНОДОМ, а почва – электролитом.

Разрушение всегда на АНОДЕ!!!!!!!!!!!!!!

Так как материал протектора является более электроотрицательным, то под действием разности потенциалов происходит направленное движение электронов ё от протектора к трубопроводу по проводнику 3. Одновременно ион-атомы материала протектора переходят в раствор, что приводит к его разрушению. При этом сила тока контролируется с помощью контрольно-измерительной колонки.

Таким образом, разрушение металла все равно имеет место. Но не трубопровода, а протектора.

Теоретически для защиты стальных сооружений от коррозии могут быть использованы все металлы, расположенные в электрохимическом ряду напряжений левее железа, так как они более электроотрицательны. Практически же протекторы изготовляют только из материалов, удовлетворяющих следующим требованиям:

- разность потенциалов материала протектора и железа (стали) должна быть как можно больше;

- ток, получаемый при электрохимическом растворении единицы массы протектора (токоотдача), должен быть максимальным;

- отношение массы протектора, израсходованной на создание защитного тока, к общей потере массы протектора (коэффициент использования) должно быть наибольшим.

Данным требованиям в наибольшей степени удовлетворяют магний, цинк и алюминий.

Видно, что отдать предпочтение какому-либо одному металлу трудно. Поэтому протекторы изготовляют из сплавов этих металлов с добавками, улучшающими работу протекторной защиты. В зависимости от преобладающего компонента сплавы бывают магниевые, алюминиевые, цинковые. В качестве добавок используют марганец (способствует повышению токоотдачи), индий (препятствует образованию плотной окисной пленки на поверхности сплава, а значит, его пассивации) и др.

Применяют защиту протекторами, расположенными как поодиночке (если состояние изоляционного покрытия трубопровода хорошее), так и группами (применяют при защите участков трубопроводов с плохой изоляцией или неизолированных патронов на переходах через шоссейные и железные дороги). Кроме того, защита от коррозии трубопроводов может быть выполнена протяженными протекторами. Защиту одиночными и групповыми коллекторами рекомендуется использовать в грунтах с удельным сопротивлением не более 50 Ом-м, а протяженными — не более 500 Ом-м.

Повышение эффективности действия протекторной установки достигается погружением ее в специальную смесь солей, называемую «заполнителем» или активатором. Непосредственное погружение протектора в грунт менее эффективно, чем в заполнитель. Заполнитель готовится путем смешения сухих солей и глины.

Назначение заполнителей следующее:

- снижение собственной коррозии

- уменьшение анодной поляризуемости

- снижение сопротивления растеканию тока с протектора

- устранение причин, способствующих образованию плотных слоев продуктов коррозии на поверхности протекторов.

10-3. Основной принцип электродренажной защиты.

Для электрозащиты магистральных трубопроводов от блуждающих токов применяют электродренажную защиту (рис. 1), отводящую блуждающие токи с трубопровода в рельсовую часть цепи электротяги или на сборную шину отсасывающих кабелей тяговой подстанции железной дороги. Блуждающие токи достигают значительных величин и могут вызвать сквозную коррозию стенок трубопровода через 3 - 5 лет после его укладки. В связи с этим ввод в действие электродренажных станций должен совпасть с укладкой трубопровода в траншею и засыпкой его.                           

Рисунок 1. Принципиальная схема электродренажной защиты магистрального трубопровода

1 – трубопровод; 2 – контакт катодного вывода; 3 - катодный вывод; 4 – точка дренажа на трубопроводе; 5 – поляризованная электродренажная установка; 6 – контакт схемы с рельсовой сетью; 7 – рельсовая сеть; 8 – дренажный кабель.

К трубопроводу (1) подключают дренажное устройство (5) в точке дренажа (4) при помощи дренажного кабеля (8), который также подключен к рельсовой сети (7) электрифицированного транспорта. Создается положительная разность потенциалов в цепи «трубопровод-рельс» и потечет ток Iдр. Дренажная защита на устойчивых анодных участках действует непрерывно, а на знакопеременных (при проявлении на трубопроводе положительных потенциалов) – периодически.

Применяют прямой, поляризованный и усиленный дренажи.

1) Прямой электрический дренаж — это дренажное устройство двусторонней проводимости. Дренаж при котором ток может идти в любом направлении, то есть из рельсов в трубопровод и наоборот. Схема прямого электрического дренажа (рис. 2, а) включает: реостат R, рубильник К, плавкий предохранитель Пр и сигнальное реле СР. Сила тока в цепи трубопровод — рельс регулируется реостатом. Если значение тока превысит допустимое значение, то плавкий предохранитель сгорит, ток потечет по обмотке реле, при включении которого включается звуковой или световой сигнал.

Прямой электрический дренаж применяют в тех случаях, когда потенциал трубопровода постоянно выше потенциала рельсовой сети, куда отводятся блуждающие токи. В противном случае дренаж превратится в канал для натекания блуждающих токов на трубопровод.

2) Поляризованный электрический дренаж — это дренажное устройство, обладающее односторонней проводимостью (из трубопровода в рельс)(рис. 2, б). Поляризованный дренаж обеспечивает постоянный, более отрицательный понетциал защищаемого трубопровода. От прямого дренажа поляризованный отличается наличием элемента односторонней проводимости — вентильного элемента (ВЭ). При поляризованном дренаже ток протекает только от трубопровода к рельсу, что исключает натекание блуждающих токов на трубопровод по дренажному проводу.

3) Усиленный дренаж (рис. 2, в) применяют в тех случаях, когда нужно не только отводить блуждающие токи с трубопровода, но и обеспечить на нем необходимое значение защитного потенциала. Усиленный дренаж представляет собой обычную катодную станцию, подключенную отрицательным полюсом к защищаемому сооружению и положительным — не к анодному заземлению, а к рельсам электрифицированного транспорта. За счет такой схемы подключения обеспечивается, во-первых, поляризованный дренаж (благодаря работе вентильных элементов в схеме СКЗ), а во-вторых, катодная станция удерживает необходимый защитный потенциал трубопровода. После ввода трубопровода в эксплуатацию проводят регулировки параметров работы системы его защиты от коррозии. При необходимости можно вводить в эксплуатацию дополнительные станции катодной и дренажной защиты, а также протекторные установки. 

Рис. 2. Принципиальные схемы электрических дренажей:

R — реостат; К — рубильник; Пр — плавкий предохранитель; СР — сигнальное реле; ВЭ — вентильный элемент; А — измерительный амперметр; Тр — трансформатор; П — соединительный провод

10-4. Электрохимический метод защиты подземного перехода магистральных трубопроводов.

Для подземных переходов применяют протекторный метод защиты. Патроны не имеют изолированного покрытия и по всей поверхности соприкасаются с коррозионной почвенной средой. Патрон, поврежденный коррозией не защищает от динамических нагрузок, создаваемых железнодорожным и автотранспортом, а также не обеспечивает безопасности в случае разрыва стыка трубопровода внутри него. В связи с этим патрон должен быть энергетически изолирован т трубопровода, в противном случае снижается эффективность катодной защиты. Замыкание трубопровода с патроном приводит к следующему:

1) возникает коррозионная опасность на трубопроводе за счет блуждающих токов, входящих через патрон

2) увеличивается опасность разрушения патрона блуждающими токами, стекающими с трубопровода через патрон

3) увеличение коррозионной опасности как на трубопроводе, так и на патроне.

Патрон, изолированный от трубопровода вследствие небольшой протяженности не подвержен воздействию блуждающих токов и разрушается в основном под действием почвенной коррозии. Поэтому патрон защищают от коррозии при помощи создания гальванической пары «протектор – патрон» (рисунок 1). Необходимое число протекторов рассчитывают, исходя из потенциала или плотности тока с учетом поверхности патрона (диаметра и его длины) и удельного электрического сопротивления грунта.

Рисунок 1. Схема протекторной защиты патрона трубопровода.

1 – трубопровод, 2 – протекторная установка, 3 – контрольно-измерительная колонка, 4 – патрон.

Протекторную защиту трубопроводов применяют при значительной удаленности их от источников электроснабжения, где применение катодной защиты экономически нецелесообразно, а также в местах установки патронов при переходах через железнодорожные или шоссейные дороги, на изолированных фланцах (для снятия анодных зон).

Протекторные установки бывают двух типов – одиночные (если состояние изоляционного покрытия трубопровода хорошее) и групповые (при защите участков трубопроводов через шоссейные и железные дороги для увеличения срока службы). Протекторы в групповых установках располагают с разных сторон от защищаемых патронов. Протекторы могут устанавливаться вертикально в пробуренные скважины или горизонтально в общей траншее.

10-5. Электрохимический метод защиты подземных и заглубленных металлических емкостей.

Для подземных и заглубленных металлических емкостей применяют протекторный метод защиты.

Подземные металлические емкости (склады ГСМ, водо- и конденсатосборники) должны защищаться от действия почвенной коррозии. Блуждающие токи на подземные емкости из-за их длины не оказывают вредного влияния. Перед установкой емкостей их изолируют, но одной этой меры оказывается недостаточно, поэтому по периметру на расстоянии 2-4 м от емкости устанавливают протекторы (рисунок 1). Число их зависит от размеров поверхности емкости и удельного электрического сопротивления грунта.

Рисунок 1. Схема протекторной защиты подземной металлической емкости

1 – емкость, 2 – горловина емкости, 3 – протекторная установка.

Обычно на каждом углу емкости подключают одиночные протекторы, затем измеряют разность потенциалов «емкость-земля» и при необходимости устанавливают дополнительные протекторы до достижения полной защиты емкости.

Протекторную защиту применяют при значительной удаленности от источников электроснабжения, где применение катодной защиты экономически нецелесообразно, а также для защиты металлических подземных емкостей (конденсато- и водосборники).

Протекторные установки бывают двух типов – одиночные (если состояние изоляционного покрытия трубопровода хорошее) и групповые (при защите участков трубопроводов через шоссейные и железные дороги для увеличения срока службы).


 

А также другие работы, которые могут Вас заинтересовать

18811. Взаимодействие организма и среды 121.5 KB
  Лекция 2. Взаимодействие организма и среды План лекции: Понятие о среде обитания и средах жизни Основные представления об адаптациях организмов. Факторы среды. Классификация факторов Общие закономерности воздействия факторов на живые организмы ...
18812. Популяционный уровень жизни. Биоценозы и экосистемы, основы их жизнедеятельности 90.5 KB
  Лекция 3–4. Популяционный уровень жизни. Биоценозы и экосистемы основы их жизнедеятельности План лекции Популяция ее характеристики и структура. Понятие о биоценозе и его структуре. Экосистема ее свойства и структура. Поток энергии и пищевые цепи. Э...
18813. Биосфера – глобальная экосистема 72.5 KB
  Лекция 5 Тема: Биосфера – глобальная экосистема. План 1. Общие закономерности организации биосферы. Структура и границы. 2. Закон В.И. Вернадского о биогенной миграции атомов в биосфере. 3. Основные функции живого вещества. 4. Место человека в биосфере. Концепция и кри...
18814. Биогеохимические циклы. Круговорот веществ в природе 53 KB
  Тема: Биогеохимические циклы. План лекции Круговорот веществ в природе Биогеохимические циклы наиболее жизненно важных биогенных веществ Весь лик Земли: все ее ландшафты атмосфера химический состав вод – все это обязано своим происхождением прежд
18815. Глобальные проблемы современности, Парниковый эффект, озоновые «дыры», кислотные дожди 90.5 KB
  Глобальные проблемы современности. Понятие загрязняющего вещества. Классификация загрязнений. Краткая характеристика загрязнения сред биосферы. Парниковый эффект озоновые дыры кислотные дожди Понятие загрязняющего вещества...
18816. ОБЩИЕ ВОПРОСЫ ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ 93 KB
  Лекция 7. Тема: ОБЩИЕ ВОПРОСЫ ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ План лекции 1. Общие положения охраны природной среды при хозяйственной деятельности. Концепция управления природными ресурсами по законам экологии. Инженерные природоохранные мероприятия 1. Общ
18817. Экологическая защита и охрана ОПС 77.5 KB
  Экологическая защита и охрана ОПС Примечание: Материал воспроизведен по Маковику. В этом источнике он хорошо систематизирован. Жирным курсивом выделена информация кот. будет использована во время третьего тестового контроля федеральные тестовые вопросы ...
18818. Основы экологического права. Ответственность за экологические нарушения 107.5 KB
  Лекция №9. Тема: Основы экологического права. План 1.Источники экологического права. 2.Государственные органы охраны окружающей среды. 3.Экологическая экспертиза. 4.Экологический мониторинг. 5. Экологический вред и экологический риск 6. Ответственность за ...
18819. Основы защиты водных объектов от загрязнения 89 KB
  Лекция №12 Тема: Основы защиты водных объектов от загрязнения. План Запасы природных вод. Основы классификации природных вод. Характеристика водопользования и водопотребления. Критерии качества воды. Промышленная классификация вод и систем водоснабжен...