1983

ЕКОНОМІКА ПРИРОДОКОРИСТУВАННЯ

Книга

Экономическая теория и математическое моделирование

Поняття, види і особливості природокористування. Навколишнє природне середовище. Поняття і класифікація природних ресурсів, сутність і функції статистики навколишнього середовища.

Украинкский

2013-02-09

1.15 MB

18 чел.

 

А также другие работы, которые могут Вас заинтересовать

19013. Кинематика и динамика упругого столкновения частиц. Переход в Ц-систему. Импульсные диаграммы. Связь углов рассеяния в Л- и Ц-системах 1.06 MB
  Лекция 11. Кинематика и динамика упругого столкновения частиц. Переход в Цсистему. Импульсные диаграммы. Связь углов рассеяния в Л и Цсистемах Столкновение двух частиц называется упругим если оно не сопровождается изменением их внутреннего состояния в том числе не ...
19014. Дифференциальное сечение рассеяния частиц. Формула Резерфорда 2.55 MB
  Лекция 12. Дифференциальное сечение рассеяния частиц. Формула Резерфорда Для изучения характера взаимодействия частиц друг с другом обычно проводятся эксперименты по рассеянию целого пучка одинаковых частиц которые падают из бесконечности с одинаковой начальной с...
19015. Малые одномерные колебания (свободные и вынужденные). Вынужденные колебания под действием произвольной силы 2.55 MB
  Лекция 13. Малые одномерные колебания свободные и вынужденные. Вынужденные колебания под действием произвольной силы. Вынужденные колебания под действием гармонической силы. Резонанс. Затухающие колебания Распространенным движением в природе являются колебания те
19016. Малые колебания системы со многими степенями свободы. Собственные частоты и нормальные координаты 459.5 KB
  Лекция 14. Малые колебания системы со многими степенями свободы. Собственные частоты и нормальные координаты Рассмотрим случай малых колебаний системы частиц имеющей степеней свободы. Самый общий вид функции Лагранжа такой системы таков: 1 2 Устойч
19017. Уравнения Гамильтона (канонические уравнения). Функция Гамильтона. Скобки Пуассона и их свойства 750 KB
  Лекция 15. Уравнения Гамильтона канонические уравнения. Функция Гамильтона. Скобки Пуассона и их свойства Одна из форм уравнения движения это уравнения Лагранжа когда задается функция Лагранжа как функция независимых обобщенных координат и обобщенных скоростей
19018. Канонические преобразования. Производящие функции. Временная эволюция механической системы как каноническое преобразование 901 KB
  Лекция 15. Канонические преобразования. Производящие функции. Временная эволюция механической системы как каноническое преобразование Выбор обобщенных координат не ограничен никакими условиями ими могут быть любые величин однозначно определяющие положение сис
19019. Место квантовой механики в современной физической науке. Основные экспе-риментальные факты, лежащие в основе квантовой механики 318 KB
  Лекция 1. Место квантовой механики в современной физической науке. Основные экспериментальные факты лежащие в основе квантовой механики В современной науке квантовая механика занимает важнейшее место поскольку формирует основные идеи современного подхода к описа
19020. Принципы построения и постулаты квантовой механики. Операторы физических величин 285 KB
  Лекция 2 Принципы построения и постулаты квантовой механики. Операторы физических величин Как следует из опытов по дифракции микрочастиц в квантовой механике отсутствует понятие траектории т.е. состояние квантовой частицы не описывается заданием координаты и имп
19021. Операторы координаты и импульса: уравнения на собственные значения и собственные функции, разложения, координатное и импульсное представления волновой функции 444.5 KB
  Лекция 3 Операторы координаты и импульса: уравнения на собственные значения и собственные функции разложения координатное и импульсное представления волновой функции Найдем оператор координаты в представлении то есть найдем как действует этот оператор на про