19852

Принцип действия просвечивающего электронного микроскопа (ПЭМ). Схема ПЭМ

Лекция

Физика

Лекция 17 Принцип действия просвечивающего электронного микроскопа ПЭМ. Схема ПЭМ. Все современные просвечивающие электронные микроскопы ПЭМ могут работать в двух режимах – в режиме изображения и в режиме дифракции. Ход лучей в этих режимах указан на рис. 17: а – режим ...

Русский

2013-07-18

1007 KB

63 чел.

Лекция 17

Принцип действия просвечивающего электронного микроскопа (ПЭМ). Схема ПЭМ.

Все современные просвечивающие электронные микроскопы (ПЭМ) могут работать в двух режимах – в режиме изображения и в режиме дифракции. Ход лучей в этих режимах указан на рис. 17: а – режим изображения; б – режим микродифракции.

Электронный пучок формируется в ускорительной колонне 1, состоящей из электронной пушки, секционной ускорительной трубки (обычно 6 секций) и системы отклонения. Энергия электронов на выходе ускорительной колонны, определяется величиной ускоряющего напряжения на электронной пушке и в различных типах ПЭМ может меняться в пределах 20-200 кэВ. Чем больше энергия электронов, тем меньше длина волны, тем больше проникающая способность электронов.

После ускорительной колонны установлена система конденсорных линз 2, назначение которой получить электронный пучок с минимальным угловым расхождением. Ускорительная колонна совместно с системой конденсорных линз позволяет получать электронные пучки разного диаметра. Минимальный диаметр электронного пучка в ПЭМ может составлять несколько нанометров, что позволяет получать дифракцию от локальной области такого же диаметра в режиме микролучевой дифракции. При работе в режиме изображений при помощи системы конденсорных линз получают параллельный пучок электронов. Система отклонения предназначена для электронного наклона пучка в режиме изображения и дифракции.

Ускорительная колонна и система конденсорных линз образуют осветитель.

За системой конденсорных линз расположена объективная линза. Держатель с образцом 3 устанавливается  в зазор полюсного наконечника объективной линзы, так чтобы образец находился в предполье объективной линзы. Гониометрическая головка позволяет осуществлять поворот образца относительно электронного пучка на угол ± 12º. Так как в просвечивающей электронной микроскопии изображение формируется электронами, прошедшими через образец, то его толщина должна быть много меньше длины пробега электронов в материале образца.

Пройдя через образец, электроны попадают в объективную линзу 4. Данная короткофокусная (несколько мм) линза, имеющая небольшое увеличение (~ 50), является ключевой в дальнейшем формировании изображения, поэтому она снабжена корректором астигматизма стигматором. Диафрагма объективной линзы расположена на задней фокальной плоскости объективной линзы. В последних моделях микроскопов изображения выводятся на монитор компьютера при помощи цифровых ПЗС камер.

В ПЭМ используются электромагнитные линзы, которые состоят из обмотки, магнитопровода и полюсного наконечника. Полюсный наконечник является концентратором магнитного поля. Полюсный наконечник имеет форму круговой симметрии. В центре имеется отверстие с некоторым радиусом и зазор между полюсами. В результате такой конструкции полюсного наконечника, магнитный поток сжимается в зазоре. Электроны, проходя через объективную линзу, под действием магнитного поля отклоняются в направлении оптической оси и фокусируются в определенной точке оптической оси (в фокусе линзы).

Стандартная вакуумная система ПЭМ приведена на рис. 17.2. Вакуум создается форвакуумным насосом роторного типа (РН) и двумя диффузионными насосами (ДН). Давление контролируется четырьмя тепловыми датчиками низкого вакуума (Р1-Р4) и одним ионизационным датчиком высокого вакуума Пеннинга (РЕ). В вакуумной системе применены электромагнитные и пневматические клапана (обозначены V). Вакуумная система должна обеспечить давление в колонне микроскопа не хуже 10-6 Тор.

Микроскоп может комплектоваться дополнительными устройствами для нагрева, охлаждения, растяжения образца.

Формирование электронно-микро-скопического изображения коротко можно описать следующим образом. Электронный пучок, сформированный осветительной системой, падает на объект и рассеивается. Далее, рассеянная волна объективной линзой преобразуется в изображение. Образованное объективной линзой изображение увеличивается промежуточными линзами и проецируется проекционной линзой либо на экран для наблюдения, либо на фотопластины или выводится на дисплей монитора.

Волновую функцию изображения в операторном виде можно записать в виде

и=F-1TFq0,

где 0-падающая волна.

Проходя через образец, 0 взаимодействует с потенциалом объекта. Электронная волна на нижней поверхности образца имеет вид q0, где q- функция прохождения. Рассеяние, дифракция волны q0 описывается действием оператора Фурье F. Следовательно, на задней фокальной плоскости объективной линзы электронная волна имеет вид Fq0, которая модифицируется передаточной функцией Т объективной линзы. Преобразование рассеянной волны в волновую функцию изображения описывается оператором обратного преобразования Фурье F-1. Тогда распределение интенсивности электронов на экране будет равняться I = ии*.

Механизм формирования контраста в электронной линзе такой же, как формирование контраста в геометрической оптике с оптическими линзами. На рис. 17.3 показан ход лучей при образовании дифракционного контраста. Диафрагма объективной линзы установлена так, что она пропускает только центральный пучок, а отраженные электроны не достигают конечного изображения. Изображение будет сформировано из центрального пучка и электронов, неупруго рассеянных под малыми углами. Изображение является однолучевым и оно, в этом случае, называется светлопольным. Полученный контраст обусловлен распределением интенсивности электронов, отраженных по закону Вульфа-Брэгга и поэтому получил название дифракционный контраст. При пропускании через диафрагму двух и более пучков (в том числе и центральный пучок), получаем многолучевое светлопольное изображение. На таких изображениях преобладает фазовый контраст.

Изображения можно получить, пропуская через диафрагму объективной линзы только дифрагированные пучки. Тогда полученные изображения называются темнопольными и они так же бывают однолучевыми и многолучевыми.

Электронный микроскоп является сложным электрофизическим устройством. Детали оптической системы изготовляются из специальных материалов с высокой точностью. Колонна микроскопа должна обладать высокой виброустойчивостью, питание линз и ускоряющее напряжение должны иметь высокую стабильность.

Основными характеристиками просвечивающего электронного микроскопа являются разрешение и максимальное ускоряющее напряжение. Различают два типа разрешения – разрешение по точкам и по линиям. Обычно ПЭМ имеет разрешение по точкам ~ 2,5 Å и разрешение по линиям ~ 1,5 Å.

На просвечивающие электронные микроскопы могут устанавливаться различные приставки-анализаторы. В этом случае электронный микроскоп называют аналитическим, и он обладает такими же возможностями, что и другие аналитические устройства.

Установка на ПЭМ рентгеновского энергодисперсионного анализатора позволяет определить элементный состав, а в сочетании со сканирующей приставкой – элементное картирование по площади с привязкой к структуре образца. Другим устройством для определения элементного состава, устанавливаемым на микроскопах, является анализатор потери энергии электронов.

Рис. 17.3 9

Рис. 17.2

Рис. 17.1


 

А также другие работы, которые могут Вас заинтересовать

64710. ЛЕКЦИИ С ФИЛОСОФИИ ДЛЯ СТУДЕНТОВ 605 KB
  Очень важную роль играет также методологическая функция философии, вытекающая из универсального характера философского знания. В итоге ее общие принципы и методы становятся общеметодологическими по отношению к специфическим дисциплинарным.
64711. КУРС ЛЕКЦИЙ ПО ФИЛОСОФИИ 1.06 MB
  В предлагаемом Курсе лекций по философии рассматриваются проблемы философского знания впервые в отечественной литературе на основе творческого вклада русской философской мысли используются современные подходы и оценки отечественных и зарубежных авторов...
64712. ЭКОНОМИКА И УПРАВЛЕНИЕ ПРОИЗВОДСТВОМ 1.55 MB
  На внутреннем и внешнем рынках действуют свободные цены на продукцию либерализована внешнеэкономическая деятельность отсутствует жесткая система управления на федеральном и региональном уровнях; огромная номенклатура выпускаемой продукции.
64713. Physics-Mathematical modeling 401 KB
  Using the general laws of the thermodynamics such integrals can be written for any function we are interested in. For example, the equilibrium states can be described by the minimum of the potential energy...
64714. НЕФТЕГАЗОВОЕ ТОВАРОВЕДЕНИЕ 527 KB
  Нефть это не только источник получения топлива различных видов и назначений смазочных и специальных масел пластичных смазок рабочих жидкостей для гидравлических систем парафинов и других продуктов но и сырье для получения синтетического каучука пластмасс полимерных материалов химических волокон...
64715. Финансы, финансовая система 67 KB
  Лекция посвящена рассмотрению того что включают в себя финансовые отношения как формируется финансовая система какова роль этой системы в общей социально-экономической системе государства. Сущность финансовых отношений задачи и структура финансовой системы.
64716. ТЕОРИЯ И МЕТОДИКА ФИЗИЧЕСКОГО ВОСПИТАНИЯ И СПОРТА 4.58 MB
  Как только трудовые действия начали применяться вне реальных трудовых процессов они превратились в физические упражнения. Превращение трудовых действий в физические упражнения значительно расширило сферу их воздействия на человека...
64717. Коренные народы Ленинградской области и судьбы их языков. История местности, где был основан Санкт-Петербург 364.5 KB
  Большое оживление на водных путях Восточной Европы наблюдалось уже в VIII‒XI в. известный журналист и историк Федор Осипович Туманский посвятил характеристике финноязычных народов их языку и быту. А людей знающих водский язык вдвое меньше.