19857

Принцип действия магнитно-силового микроскопа (МСМ). Квазистатические методики в МСМ

Лекция

Физика

Лекция 22 Принцип действия магнитносилового микроскопа МСМ. Квазистатические методики в МСМ. Колебательные методики в МСМ. Магнитносиловой микроскоп МСМ был изобретен И. Мартином и К. Викрамасингхом в 1987 г. для исследования локальных магнитных свойств образцов. Дан...

Русский

2013-07-18

1.67 MB

40 чел.

Лекция 22

Принцип действия магнитно-силового микроскопа (МСМ). Квазистатические методики в МСМ. Колебательные методики в МСМ.

Магнитно-силовой микроскоп (МСМ) был изобретен И. Мартином и К. Викрамасингхом в 1987 г. для исследования локальных магнитных свойств образцов. Данный прибор представляет собой атомно-силовой микроскоп, у которого зонд покрыт слоем ферромагнитного материала с удельной намагниченностью M(r). Принцип действия МСМ проиллюстрирован на рис. 22.1.

Рис. 22.1

В общем случае описание взаимодействия зонда МСМ с полем образца H(r) представляет собой достаточно сложную задачу. В качестве простейшей модели рассмотрим зонд МСМ в виде одиночного магнитного диполя, характеризующегося магнитным моментом .

Потенциальная энергия такой системы

U = –H.

В поле H на магнитный диполь действует сила

f = –gradU

и момент сил

N = [H].

В однородном магнитном поле сила f = 0, так что на диполь действует лишь момент сил, который разворачивает магнитный момент вдоль поля. В неоднородном поле диполь втягивается в область с большей напряженностью H.

В общем случае магнитный момент зонда МСМ можно представить как суперпозицию диполей вида M(r)dV, где M(r) – удельная намагниченность магнитного покрытия.

Взаимодействие зонда МСМ с магнитным полем образца показано на рис. 22.1.

Рис. 22.1

Полная энергия магнитного взаимодействия зонда и образца в соответствие с рис. 22.1 может быть представлена в следующем виде:

,

где интегрирование проводится по магнитному слою зонда.

Отсюда сила взаимодействия зонда с полем образца

.

Соответственно z-компонента силы:

.    (22.1)

Для получения МСМ изображений образцов применяются квазистатические и колебательные методики.

Квазистатические методики

Для образцов, имеющих слабо развитый рельеф поверхности, МСМ изображение поверхности получают следующим образом. Во время сканирования зондовый датчик перемещается над образцом на некотором расстоянии h = const. При этом величина изгиба кантилевера, регистрируемая оптической системой, записывается в виде МСМ изображения F(x,y), представляющего собой распределение силы магнитного взаимодействия зонда с образцом.

Для исследований магнитных образцов с сильно развитым рельефом поверхности применяется двухпроходная методика. В каждой строке сканирования производится следующая процедура. На первом проходе снимается АСМ изображение рельефа в контактном или полуконтактном режиме. Затем зондовый датчик отводится от поверхности на расстояние z0, и осуществляется повторное сканирование (рис. 22.2). Расстояние z0 выбирается таким образом, чтобы сила Ван-дер-Ваальса была меньше силы магнитного взаимодействия.

Рис.22.2

На втором проходе датчик перемещается над поверхностью по траектории, повторяющей рельеф образца. Поскольку в этом случае локальное расстояние между зондовым датчиком и поверхностью в каждой точке постоянно, изменения изгиба кантилевера в процессе сканирования связаны с неоднородностью магнитных сил, действующих на зонд со стороны образца. Таким образом, итоговый МСМ кадр представляет собой двумерную функцию F(x,y), характеризующую распределение силы магнитного взаимодействия зонда с образцом.

Колебательные методики

Применение колебательных методик в магнитно-силовой микроскопии позволяет реализовать большую (по сравнению с квазистатическими методиками) чувствительность и получать более качественные МСМ изображения образцов. Как было показано в разделе, посвященном бесконтактной методике АСМ, наличие градиента силы приводит к изменению резонансной частоты, а следовательно, к сдвигу АЧХ и ФЧХ системы зонд-образец. Данные изменения резонансных свойств системы используются для получения информации о неоднородном распределении намагниченности на поверхности образцов. В случае магнитного взаимодействия зонда с поверхностью сдвиг резонансной частоты колеблющегося кантилевера будет определяться производной по координате z от величины Fz 

.

Для получения МСМ изображения поверхности используется двухпроходная методика. С помощью пьезовибратора возбуждаются колебания кантилевера на частоте ω вблизи резонанса. На первом проходе в полуконтактном режиме записывается рельеф поверхности. На втором проходе зондовый датчик движется над образцом по траектории, соответствующей рельефу, так, что расстояние между ним и поверхностью в каждой точке равно величине z0 = const, определяемой оператором. МСМ изображение формируется посредством регистрации изменений амплитуды или фазы колебаний кантилевера.

Изменения амплитуды и сдвиг фазы колебаний, связанные с вариациями градиента силы, при условии, что изменения Fz' вдоль поверхности невелики, будут равны

Коэффициенты перед ΔFz' определяют чувствительность амплитудного и фазового методов измерения. Максимум чувствительности достигается при определенных частотах возбуждения кантилевера.

В качестве примера на рис. 22.3 приведены МСМ изображения поверхности магнитного диска, полученные с помощью различных методик.

Рис. 22.3

(а) – АСМ изображение рельефа поверхности;

(б) – МСМ изображение фазового контраста;

(в) – МСМ изображение амплитудного контраста;

(г) – МСМ изображение распределения силы взаимодействия зонда с поверхностью.

На рис. 22.4 приведено МСМ изображение массива магнитных наночастиц, сформированных методом интерференционного лазерного отжига пленок Fe-Cr.

Рис. 22.4


 

А также другие работы, которые могут Вас заинтересовать

1880. Здоровый образ жизни 16.33 KB
  Проведение беседы со студентами по поводу здорового образа жизни. Привлечение студентов к здоровому образу жизни.
1881. Создание воспитательного пространства как фактор педагогизации среды 17.85 KB
  Воспитательное пространство - это среда, механизмом организации которой является педагогическое событие детей и взрослых. Педагогизация среды – это простаивание структуры, отношений, оформление пространства, окружающих образовательное учреждение и места проживания семей как целесообразно воспитывающих.
1882. Воспитательный потенциал урока 20.13 KB
  Базой развития и воспитания ребенка продолжают оставаться фундаментальные знания, которые он получает в ходе образовательного процесса. Однако образование личности должно быть сориентировано не только на усвоение определенной суммы знаний.
1883. Разработка метода обнаружения развития аварии в кабельной линии до пробоя изоляции 217.6 KB
  Цель работы — разработка метода обнаружения развития аварии в кабельной линии до пробоя изоляции, разработка структурной схемы работы устройства прогнозирующей защиты, создание устройства, разработка алгоритма и программного обеспечения для устройства.
1884. ГЛАГОЛЬНЫЕ НОВООБРАЗОВАНИЯ В СОВРЕМЕННОМ РУССКОМ ЯЗЫКЕ: СЕМАНТИКА И ФУНКЦИОНИРОВАНИЕ 281.12 KB
  Показать взаимосвязь фактов действительности и словообразовательной системы русского языка, выявить структурно-семантические особенности глагольных новообразований с модификационным значением, описать стилистические возможности глагольных новообразований, установить особенности функционирования последних в тексте.
1885. ЛИНГВОКУЛЬТУРНАЯ И КОГНИТИВНАЯ РЕПРЕЗЕНТАЦИЯ КОНЦЕПТА ИНТЕРЕС В РУССКОМ И АНГЛИЙСКОМ ЯЗЫКАХ 282.27 KB
  Феномен интереса в языковом сознании, реконструируемый из употребления соответствующих языковых единиц в английском и русском языках, извлеченных из языковых и речевых источников.
1886. МНОГОЧЛЕННЫЕ ОМОНИМИЧЕСКИЕ ФРАЗЕОЛОГИЧЕСКИЕ РЯДЫ В СТРУКТУРНОМ И СЕМАНТИЧЕСКОМ АСПЕКТАХ 283.42 KB
  Многочленные фразеологические омонимы. Многочленный фразеологический омонимический ряд состоит из трех и более фразеологических омонимов и представляет собой один из частных случаев проявления омонимических отношений между фразеологизмами.
1887. ПРОЦЕССУАЛЬНЫЕ ФРАЗЕОЛОГИЗМЫ СУБКАТЕГОРИИ ДЕЯТЕЛЬНОСТИ 283.69 KB
  Объектом исследования являются процессуальные фразеологизмы субкатегории деятельности как системно организованное объединение процессуальных фразеологических единиц, характеризующееся особыми структурными и семантическими свойствами.
1888. Темпоральность художественного текста на материале английского и татарского языков 285.63 KB
  Цель заключается в том, чтобы на основе сопоставительно-типологического анализа системы глагольных времен двух языков, которые не являются близкими в структурно-типологическом отношении, выявить и показать типологические сходства и различия, как в плане выражения, так и в плане содержания.