19860

Физические основы рентгеновского микроанализа. Количественный рентгеновский микроанализ с использованием метода трех поправок

Лекция

Физика

Лекция 25 Физические основы рентгеновского микроанализа. Количественный рентгеновский микроанализ с использованием метода трех поправок. Как было отмечено ранее при взаимодействии электронного пучка с образцом генерируется характеристическое рентгеновское излуче...

Русский

2013-07-18

604 KB

29 чел.

Лекция 25

Физические основы рентгеновского микроанализа. Количественный рентгеновский микроанализ с использованием метода трех поправок.

Как было отмечено ранее, при взаимодействии электронного пучка с образцом генерируется характеристическое рентгеновское излучение (ХРИ). Это обстоятельство лежит в основе метода элементного анализа, называемого рентгеновский микроанализ. Базой для рентгеновского микроанализа служит электронно-оптическая система растрового электронного микроскопа, поэтому часто эти два прибора совмещают в одном, который называется РЭММА (Растровый Электронный Микроскоп Рентгеновский Микроанализатор).

Напомним основные моменты, связанные с генерацией ХРИ. При проникновении первичных электронов в образец они тормозятся не только электрическим полем атомов, но и непосредственным  столкновением с электронами атомов материала образца. В результате этого первичные электроны могут выбивать электроны с внутренних К-, L- или М-оболочек, оставляя атом в энергетически возбужденном состоянии. Образующиеся вакансии заполняются переходами электронов с более высоких энергетических уровней. Атом переходит в основное состояние, избыточная энергия выделяется в виде кванта рентгеновского излучения.

Поскольку энергия возникающего кванта зависит только от энергии участвующих в процессе электронных уровней, а они являются характерными для каждого элемента, возникает характеристическое рентгеновское излучение. Так как каждый атом имеет вполне определенное конечное число уровней, между которыми возможны переходы только определенного типа, характеристическое рентгеновское излучение дает дискретный линейчатый спектр.

Если определить энергии или длины волн спектра характеристического рентгеновского излучения, то можно сделать выводы об элементах, содержащихся в образце, т.е. провести качественный анализ. Это основа рентгеновского микроанализа. Если по характеристическому спектру можно определить интенсивность линий участвующих элементов (как правило, a-линий), то на этой основе можно выполнить количественный анализ элементов.

При проведении рентгеновского микроанализа в систему РЭМ вводится рентгеновский спектрометр. Спектрометры могут быть различного типа. Если спектрометр определяет интенсивность излучения как функцию длины волны l, то он относится к типу спектрометров волновой дисперсии, а когда как функцию энергии Е, то является энергетическим дисперсионным спектрометром.

В спектрометрах волновой дисперсии (СВД) возбужденное в образце рентгеновское излучение попадает на кристалл-анализатор и отражается от него под разными углами q в зависимости от длины волны l в соответствии с законом Брэгга-Вульфа. Отраженное излучение регистрируется пропорциональным рентгеновским счетчиком. С помощью такого спектрометра можно определить элементы с порядковыми номерами от Z = 4 (Ве) до Z = 92 (U). Для этого требуется регистрации излучений с большим интервалом длин волн и, соответственно, необходим набора кристаллов-анализаторов.

Основой энергетического дисперсионного спектрометра (ЭДС) служит полупроводниковый детектор, принцип действия которого был рассмотрен в прошлом семестре. Сигнал с детектора подается в многоканальный анализатор, который позволяет регистрировать и просматривать на экране монитора спектр, включающий пики от всех элементов, входящих в образец.

Большим преимуществом энергетических дисперсионных спектрометров является то, что энергия всех падающих квантов может быть обработана одновременно. В результате этого для снятия рентгеновского спектра требуется всего лишь несколько минут, в то время как при работе со спектрометрами волновой дисперсии необходимо затратить на ту же операцию один или несколько часов. Недостатком энергетических дисперсионных спектрометров является примерно на порядок меньшее энергетическое разрешение по сравнению со спектрометрами волновой дисперсии и возможность идентифицировать элементы начиная только с порядкового номера Z = 11 (Na).

Линии ХРИ наблюдаются на фоне непрерывного тормозного рентгеновского излучения, которое является фоном. На рис. 25.1 приведен спектр рентгеновского излучения от монокристалла NaAlF5Cs, снятый спектрометром энергетической дисперсии, соответственно с фоном тормозного рентгеновского излучения (верхний спектр) и после вычитания фона (нижний спектр).

Рис. 25.1

Видно, что амплитуда линий характеристического рентгеновского излучения значительно ниже уровня фона.

Та же проблема отделений линий ХРИ от фона возникает и при использовании спектрометра волновой дисперсии, как это видно из рис. 25.2, на котором приведен спектр сплава редкоземельных металлов, снятый спектрометром волновой дисперсии.

Рис. 25.2

Качественный анализ обычно используется для определения характера распределения элементов по поверхности образца. Это реализуется путем получения рентгеновского растрового изображения, аналогично формированию изображения в РЭМ. В тот момент, когда сигнал, свидетельствующий о наличии того или иного элемента, поступает на ЭЛТ, на экране появляется светлая точка. Плотность точек является ориентировочной мерой концентрации исследуемого элемента. По этим данным можно приближенно судить о составе различных участков образца, в частности, о распределении элементов по границам зерен, составе вторых фаз и т.д. Следует иметь в виду, что малые количества элементов этим методом обнаружить нельзя, так как при сканировании продолжительность регистрации в каждой точке невелика, что приводит к ошибке счета. После качественного анализа часто проводят количественный анализ в отдельно выбранных точках.

В качестве примера качественного анализа на рис. 25.3 приведено распределение элементов в образце армированного алюминия. Приведено изображение образца во вторичных электронах и характеристических рентгеновских лучах Кα: Al, Cr, Co, Ni соответственно.

Рис. 25.3

Количественный анализ базируется на следующих соотношениях. Имеется образец, элементный состав которого предварительно определен в результате качественного анализа. Требующие определения относительные концентрации элементов есть Ci. Также неизвестная атомная концентрация есть n0, соответственно атомная концентрация каждого элемента есть ni = Ci.n0. Рассмотрим выход характеристического рентгеновского излучения конкретной линии какого-то из элементов из тонкого слоя dx, расположенного на глубине x от поверхности образца, как показано на рис. 25.4. Интенсивность может быть записана в виде

    (25.1)

где Ie – интенсивность электронного пучка на глубине х с энергиями больше энергии связи ионизуемого атома;

е(х) – сечение ударной электронной ионизации оболочки атома, причем е(х) = е[Ee(х), ni(х)];

W – вероятность рентгеновской флуоресценции (имеется конкурирующий Оже-процесс);

– коэффициент линейного поглощения материала образца данного ХРИ, рассчитать который можно, только зная относительные концентрации элементов;

д – телесный угол детектора.

Тогда измеряемая интенсивность при энергии, соответствующей данной линии, имеет вид

На практике разрешить это интегральное уравнение относительно ni не удается, поэтому используется метод эталонов.

В основе метода эталонов лежит положение, что в нулевом приближении отношение интенсивности ХРИ от элемента Z, генерируемого в многокомпонентном образце, к интенсивности ХРИ, генерируемого в моноэлементном образце Z, пропорционально концентрации данного элемента в многокомпонентном образце.

Пусть образец содержит элементы А, В, …По измеренным интенсивностям каждого элемента в нулевом приближении принимается, что атомные концентрации

Дальше вводятся поправки на

  1.  различие в рассеянии и торможении электронов в образце и эталоне за счет различий в атомном номере – фактор kZ;
  2.  различий в поглощении ХРИ (линейный коэффициент поглощения) в образце и эталоне – фактор kА;
  3.  генерирование данного ХРИ в образце за счет квантов ХРИ от других элементов фактор kF.

Это т.н. метод трех поправок или метод ZAF.

С учетом поправок считают в первом приближении После этого методом последовательных итераций определяют значения относительных концентраций, к которым сходится процесс итераций.

В ПЭВМ, поставляемом вместе с РЭММА, "зашиты" программы расчета каждого фактора на основании довольно громоздких эмпирических выражений, которые периодически корректируются. Поэтому более новые РЭММА позволяют получать более точные результаты не за счет улучшения аппаратной базы, а главным образом за счет этих корректировок.

Рис. 25.4

X

dx


 

А также другие работы, которые могут Вас заинтересовать

53884. Кровообращение 45.5 KB
  Восстановление знаний учащихся об органах кровообращения. Приём Мозговой штурм Что такое кровообращение Какие органы входят в систему кровообращения Какие кровеносные сосуды вы знаете Какие сосуды называются артериями Какие сосуды называются венами Какие сосуды называются капиллярами Какая бывает кровь В чём отличие 2. Этапы эволюции системы кровообращения у позвоночных животных. Приём Экскурсия по страницам зоологии у рыб двухкамерное сердце один круг кровообращения система замкнутая кровь смешанная; у...
53885. Органи кровообігу 91.5 KB
  Обладнання: таблиця Органи кровообігу картки; компютер ППЗ Природознавство 3й клас для загальноосвітніх навчальних шкіл. Органи дихання це ніс гортань трахея бронхи легені легеневі пухирці кровоносні судини 3. Мотивація навчальної діяльності Прослухавши вірш ви легко дасте відповідь на запитання: про яку систему органів сьогодні піде мова Тема сьогодні у нас важкувата Адже кров ми вивчаєм малята.
53886. День слави і печалі. Урок – пам’ять присвячений річниці бою під Крутами 111 KB
  94 роки тому назад у бою під Крутами що на Чернігівщині понад 300 курсантів військової школи студентів та гімназистів рішуче відстоюючи право українського народу жити у власній державі вступили у нерівний бій із значно переважаючим добре озброєним і вишколеним противником і протягом кількох днів стримували на підступах до Києва величезну більшовицьку армію. Єдиною активною мілітарною нашою силою була наша інтелігентна молодь і частина національносвідомого робітництва яке гаряче стояло за українську державність розуміючи за нами ту...
53887. Квадратне рівняння та його використання 87.5 KB
  Завдання: навчальні: відтворити знання про квадратне рівняння його види способи розвязування;вміння розвязувати квадратні рівняння. використовувати рівняння що зводяться до квадратних перетворювання раціональних виразів розвязування квадратичних виразів графічним способом; систематизувати та узагальнити навчальні досягнення учнів щодо розвязання квадратних рівнянь та їх використання в ході уроку та їх використання в ході уроку під час формування компетенцій учнів з алгебри;;розвивальні: розвивати увагу мислення пам'ять...
53889. Американська їжа. Традиційна українська кухня 332 KB
  Dear friends! I аm very glad to meet you here in our beautiful village and welcome you to the lesson About Americans Food. Today we shall speak English, watch video-cassettes. In other words we shall enjoy the English language today.
53890. Методика «Кулькова лялька» 90.5 KB
  Вік: рекомендуємо використовувати з 2х років разом з психологом з батьками до 11 років вік коли дитина ще вірить у казки чаклунство. Емоція яку проговорить дитина буде відображена на обличчі кулькової ляльки. Хід роботи: Чарівні маленькі предмети дитина кладе у коробок зпід кіндерсюрпризу. Дитина думає про те що їй допомагає та 3 рази дує в коробочок закриває його.
53891. Культура и традиции 62.5 KB
  И такой вариант возможен и у вас начнётся как переплетение с цветочками посредине. Допустим мы взяли черно злато белые цвета императорского штандарта. Что вам нужно Я взял три нитки можно цветов и поболее собрал их вместе. Можно подвести просто по одному цвету.
53892. Наземний, підземний, повітряний, водний – нас транспорт домчить будь-куди вже сьогодні 72.5 KB
  Тема: Наземний підземний повітряний водний - нас транспорт домчить будькуди вже сьогодні Автор: Ярмоленко Людмила Анатоліївна вчительлогопед ДНЗ №8 Золотий півник м. Вчительлогопед. Диференціація голосних та приголосних звуків Вчительлогопед. Вчительлогопед.