19862

Проведение количественного анализа в Оже-спектроскопии методом внешних эталонов и методом коэффициентов элементной чувствительности

Лекция

Физика

Лекция 27 Проведение количественного анализа в Ожеспектроскопии методом внешних эталонов и методом коэффициентов элементной чувствительности. Растровая Ожеэлектронная спектроскопия. Метод ОЭС позволяет проводить как качественный так и количественный элементный

Русский

2013-07-18

255.5 KB

12 чел.

Лекция 27

Проведение количественного анализа в Оже-спектроскопии методом внешних эталонов и методом коэффициентов элементной чувствительности. Растровая Оже-электронная спектроскопия.

Метод ОЭС позволяет проводить как качественный, так и количественный элементный анализ. Качественный анализ дает информацию о том, какие элементы входят в состав образца. Количественный анализ применяется для определения концентрации присутствующих на поверхности элементов

Качественный анализ. По измеренным значениям энергий Оже-электронов необходимо определить, каким именно химическим элементам соответствуют зарегистрированные максимумы спектра. Для этого используются справочники с таблицами энергий Оже-переходов и атласы эталонных Оже-спектров.

Количественный анализ. Для проведения количественного анализа методом ОЭС необходимо установить связь между током Оже-электронов данного элемента и его концентрацией в приповерхностной области.

Пусть в состав образца входит элемент, измеренная энергия Оже-пика которого соответствует Оже-переходу . Данный элемент, находящийся в слое толщиной dx расположенном на глубине x (рис. 27.1), дает следующий вклад в величину Оже-пика (в предположении 100% эффективность всей измерительной системы)

dIA = Ie(x)[1 + r(x)]и(x)n(x)WAe-x/cos(A/4)dx    (27.1)

где Ie(x) – ток электронов пучка, которые на глубине x имеют энергию больше энергии связи оболочки/подоболочки данного элемента ();

r(x) – коэффициент, учитывающий отраженные электроны, проходящие слой dx с энергией большей  (не путать с коэффициентом отражения);

и(x) – сечение ударной электронной ионизации для электронов, находящихся на глубине x;

n(x) – атомная концентрация искомого элемента на глубине x;

WA – вероятность, что в результате ионизации оболочки/подоболочки произойдет именно Оже-переход;

– глубина выхода Оже-электронов;

A – телесный угол сбора электронов электростатическим энергоанализатором.

Полный ток, отвечающий данному Оже-пику

.   (27.2)

Так как ~ 10 Å, то основной вклад в интеграл дает экспонента, поэтому формально верхний предел можно заменить на бесконечность и вынести за знак интеграла все сомножители кроме экспоненты. В результате получим

(27.3)

где I0 – ток пучка электронов; n – концентрация искомого элемента на поверхности образца, r – коэффициент, учитывающий отраженные электроны, пересекающие поверхность с энергией больше .

Непосредственное определение n в соответствие с выражением (27.3) сопряжено со значительными трудностями, связанными, в первую очередь, с неопределенностью значения r, поэтому на практике пользуются следующими приближенными методами, в конечном счете, связанными с использованием эталонных образцов.

Метод внешних эталонов.

В этом методе амплитуда Оже-пика от интересующего элемента в исследуемом образце сравнивается с амплитудой Оже-пика от моноэлементного образца, имеющего атомную концентрацию . В эталонном образце ток IA для того же перехода

Если оба измерения проведены в одинаковых условиях, то

.

Откуда искомая атомная концентрация исследуемого элемента

(27.4)

где последняя дробь – т.н. матричный фактор.

Расчету матричных факторов посвящено большое количество работ, в том числе, с использованием методов машинного моделирования процесса взаимодействия электронов с твердым телом, результаты которых приведены в справочниках.

В случае если известно, что исследуемый образец близок по стехиометрии эталонному полиатомному образцу, содержащему те же элементы, что и исследуемый образец, тогда можно считать, что матричные факторы обеих образцов практически совпадают и выражение (27.4) существенно упрощается

     (27.5)

где nэ – концентрация искомого элемента в эталонном образце. Проведя подобные измерения по всем элементам, содержащимся в исследуемом образце, мы решим задачу количественного анализа.

Метод коэффициентов элементной чувствительности.

Метод коэффициентов элементной чувствительности основан на допущении, что интенсивность оже-сигнала Ii элемента i просто пропорциональна его концентрации на поверхности ni. Это соответствует замене всех сомножителей в уравнении (27.3), кроме ni и величин А и , заданных геометрией измерения и вместе с эффективностью измерительной системы, определяющих чувствительность спектрометра k, константой Si, поэтому

.      (27.6)

Коэффициент Si определяет чувствительность метода к данному элементу и поэтому называется коэффициентом элементной чувствительности. Коэффициенты элементной чувствительности приведены в атласах эталонных Оже-спектров. Все спектры, приводимые в атласе, сняты в идентичных условиях и каждый спектр нормирован на амплитуду Оже-пика перехода MVV в серебре с энергией EА = 354 эВ, т.е. коэффициент элементной чувствительности серебра принят за 1. Проведя калибровку по серебру, т.е. определить чувствительность используемого Оже-спектрометра относительно чувствительности, приведенной в атласе, в рамках данного метода можно считать, что атомная концентрация i-элемента, в исследуемом образце (содержащим всего N элементов)

.     (27.7)

Растровая Оже-электронная спектроскопия

Оже-электронная спектроскопия дает нам информацию об элементном составе участка поверхности тела, размеры которого в первом приближении определяются размерами самого электронного зонда (пучка первичных электронов). Перемещая электронный зонд по поверхности, можно получить данные о распределении элементов на ней в разных точках. В Оже-спектрометрах первого поколения диаметр первичного электронного пучка составлял десятые доли миллиметра. Поэтому и пространственное разрешение было того же порядка. В настоящее время диаметр пучка в Оже-спектрометрах может быть доведен до сотен Å. Это дало возможность создать растровый Оже-спектрометр.

На рис. 27.1 приведены схема действия растрового Оже-спектрометра.

Первичный электронный пучок сканируется по растру на образце, подобно тому, как это сделано в растровом электронном микроскопе. Энергоанализатор настроег на энергию пропускания, соответствующую энергии Оже-пика одного из элементов, входящих в состав образца. Ток с детектора используется для модуляции яркости на экране электронно-лучевой трубки, подобно тому, как это делается в РЭМ. Развертка первичного электронного пучка в растр, естественно, синхронизована с разверткой ЭЛТ. Таким образом, получается изображение поверхности в Оже-электронах. Для получения изображения поверхности в Оже-электронах, отвечающих другому элементу, входящему в состав образца, необходимо перенастроить энергоанализатор на другую энергию пропускания, соответствующую энергии Оже электронов этого элемента.


 

А также другие работы, которые могут Вас заинтересовать

49308. Усилительное устройство 969.96 KB
  Усилительное устройство - устройство, усиливающее мощность сигнала. С точки зрения схемотехнического построения усилители бывают транзисторные и на базе интегральных микросхем (ИМС). Преимуществами усилителей на базе ИМС являются: меньшие размеры, меньшее потребление и более высокое качество.
49309. Решение математических задач с помощью циклов в среде Delphi 405.18 KB
  Найти количество тех элементов, значения которых нечетны и по модулю превосходят заданное число А. Найти номер последней пары соседних элементов, сумма которых больше заданного числа. Данный проект решено реализовать в среде программирования Borland Delphi.
49310. ДИСКРЕТНАЯ ОБРАБОТКА СИГНАЛОВ И ЦИФРОВАЯ ФИЛЬТРАЦИЯ 1.32 MB
  Тема работы: Дискретная обработка сигналов и цифровая фильтрация 2. Дискретная обработка сигналов и цифровая фильтрация: Методические указания по выполнению курсовой работы. Цифровая фильтрация.
49311. Исследование повышения продаж продукта в гостинице яхонт 110 KB
  Бурное развитие сферы услуг и туризма в россии в последнее десятилетие способствовало формированию системы продвижения сервисных и туристских услуг и, в частности, созданию рекламного рынка. В рыночных условиях предприятия сервиса должны качественно удовлетворять
49312. Геометрические параметры фюзеляжа экраноплана 922.1 KB
  Представим взлетную массу экраноплана m0=mпустmпн где mпуст масса пустого аппарата mпнмасса полезной нагрузки. Масса пустогоаппарта состоит из следующих элементов: mпуст=mkmcymоб. где mk масса конструкции; mcy масса сивой установки; mоб.упр масса оборудования и управления.
49313. С,Н, Трубецкой о природе сознания 81 KB
  Человеческое сознание предполагает чувственную, телесную организацию, и вместе оно имеет самобытное, идеальное начало. Оно предполагает бессознательную природу, которая организуется и постепенно возвышается до него, ибо оно есть конечный продукт космического развития. И в то же время оно предполагает абсолютное вселенское сознание
49314. Расчет параметров цифровых систем передачи непрерывных сообщений 181.84 KB
  Тип распределения СОДЕРЖАНИЕ Введение Распределение относительной среднеквадратичной ошибки ОСКО входных преобразований...
49315. Обоснование рациональной электротехнической службы в хозяйстве 340.98 KB
  Перечень оборудования по типовым проектам составляем на основании расчетной схемы силового и осветительного оборудования по объектам. В перечне указываем производительный объект, наименование установки, на которой имеется оборудование, условия эксплуатации этого электрооборудования, количество, тип силового и пускозащитного оборудования, мощность.
49316. Основы метода рентгенофотоэлектронной спектроскопии (РФЭС) 895.32 KB
  Анализ качественного и количественного состава поверхности. Определение химического состояния атомов поверхности. Химический сдвиг и определение химического состояния атомов на поверхности В результате этого взаимодействия с поверхности в общем случае вылетают четыре вида частиц электроны фотоны ионы и нейтральные атомы и молекулы.