19864

Метод резерфордовского обратного рассеяния (РОР). Форма спектра обратнорассеянных ионов. Аппаратура, необходимая для реализации метода РОР

Лекция

Физика

Лекция 29 Метод резерфордовского обратного рассеяния РОР. Форма спектра обратнорассеянных ионов. Аппаратура необходимая для реализации метода РОР. Первая работа посвященная анализу образца с помощью обратнорассеянных ионов появилась в 1968 г. В основе метода лежит м

Русский

2013-07-18

194 KB

24 чел.

Лекция 29

Метод резерфордовского обратного рассеяния (РОР). Форма спектра обратнорассеянных ионов. Аппаратура, необходимая для реализации метода РОР.

Первая работа, посвященная анализу образца с помощью обратнорассеянных ионов, появилась в 1968 г. В основе метода лежит модель одного отклонения – упругое рассеяние иона M1, Z1 с начальной энергией Е0 на угол > 90о на атоме M2, Z2, расположенном на глубине t от поверхности образца. Так как угол рассеяния больше 90о, то, как следует из Лекции 2, масса ионов анализирующего пучка, должна быть меньше массы атомов образца, поэтому в данном методе используются ионы гелия (ионы водорода не используются, так как в отраженном пучке присутствуют также и молекулярные ионы Н2+, что затрудняет интерпретацию экспериментальных данных).

На рис. 29.1 приведена схема рассеяния: угол падения иона на образец 0 отсчитывается от нормали к поверхности образца; точка 1 – точка входа иона в образец; в точке 2 расположен атом M2, Z2, на котором происходит упругое рассеяние; точка 3 – точка выхода обратнорассеянного иона из образца. Предполагается, что

  1.  на участке 1-2 длиной t/cos0 ион движется прямолинейно, т.е. отсутствуют ядерные взаимодействия и торможение иона чисто электронное, потеря энергии иона на этом участке Евх;
  2.  перед упругим рассеянием в точке 2 энергия иона Е* = Е0 Евх;
  3.  после упругого рассеяния энергия иона E' = kE*, где k – кинематический множитель;
  4.  на участке 2-3 длиной t/cos( ) = t/|cos| ион также движется прямолинейно (чисто электронное торможение) и выходит из образца с энергией E = E' – Евых = kE* – Евых = kЕ0kЕвх Евых под углом к поверхности (порядок отсчета угла показан на рис. 29.1).

Значения Евх и Евых определяются следующими выражениями

(29.1)

Если геометрия рассеяния задана (угол падения 0 и угол вылета в направлении детектора ионов ), тогда угол рассеяния в упругом взаимодействии в точке 2 есть = 0 и для известных M1 и M2 можно в соответствие с (1.2) вычислить кинематический фактор k. Максимальная энергия, которую могут иметь обратнорассеянные ионы, равна kE0, в случае если упругое рассеяние произошло на атомах первого монослоя. В этом случае Евх и Евых = 0.

Поскольку траектория каждого иона индивидуальна, то в рамках используемой модели расстояние точки 2 от поверхности образца произвольно, поэтому при фиксированном положении детектора угол рассеяния для разных ионов будет различным. Но так как, расстояние от образца до детектора (~ см) много больше глубины, на которой произошло рассеяния (~ мкм), то изменением ~ 10-4 рад можно пренебречь. Таким образом, энергия иона на выходе из образца Е = Е(t, k), где k – известный параметр.

Так как предполагается, что кроме единственного ядерного взаимодействия в точке 2 вдоль всей траектории иона в образце он взаимодействует только с электронами, то, следовательно, потенциал взаимодействия с ядром – кулоновский, поскольку именно для такого потенциала, как было показано, преобладающими являются электронные потери. В этом случае сечение упругого рассеяния есть Резерфордовское сечение рассеяния, которое в лабораторной системе координат для M1  M2, т.е.   1 имеет вид

(29.2)

Как было показано в Лекции 7, для того чтобы потенциал взаимодействия иона гелия с ядром был кулоновский, необходимо, чтобы энергия иона была ~ МэВ. Зависимость Se(E) для ионов гелия в различных образцах (черная линия – углерод, красная – медь, синяя – ниобий) при таких энергиях приведена на рис. 29.2. Видно, что в диапазоне энергий 0,8-1,5 МэВ электронная тормозная способность и, соответственно, удельные потери энергии практически не зависят от энергии иона. Аналогичный вид имеют зависимости Se(E) для других материалов образца. Данное обстоятельство часто используют для упрощения вычисления Евх и Евых, принимая

(29.3)

что соответствует т.н. приближению "энергии на поверхности".

Энергетический спектр обратнорассеянных ионов в модели одного отклонения можно рассчитать следующим образом. Пусть за время измерения спектра энергоанализатором с входной апертурой Д на образец с атомной концентрацией n0 попало N0+ ионов. В тонком слое dt, расположенном в образце на глубине t, упруго рассеялись dN ионов, имеющих при выходе из образца энергию E(t) – рис. 29.3. Перед упругим рассеянием данные ионы имели энергию Е*. Тогда детектор, расположенный за энергоанализатором, зарегистрирует dNД ионов, упруго рассеянных в слое dt на глубине t

,  (29.4)

где f(, ) – не содержащие энергию второй и третий сомножители в выражении (29.2).

Для того чтобы исключить из рассмотрения Е*, которая не является измеряемой величиной, запишем Евх = Е0Е* и Евых = kЕ0E(t). Тогда с учетом (29.3) справедливо следующее соотношение

.

Разрешив последнее равенство относительно Е*, получим

,

где введены обозначения

.

Используя данные обозначения можно представить dE = dl = dt/|cos| и, соответственно, dt = (|cos|/)dE. Подставив это значение и выражение для Е* в (29.4) получим энергетический спектр обратнорассеянных ионов, измеряемый энергоанализатором с угловой апертурой Д

(29.5)

Наблюдаемое в начале спектра при kЕ0 уширение, показанное на рис. 29.3, определяется величиной энергетического окна энергоанализатора.

Полученный в рамках модели одного отклонения энергетический спектр хорошо согласуется с многочисленными экспериментальными данными и поэтому выражение (29.5) является основой для элементного анализа методом Резерфордовского обратного рассеяния (РОР). В зарубежной литературе данный метод имеет аббревиатуру RBS (Rutherford Backscattering Spectrometry).

Как ясно из вышеизложенного, для реализации метода РОР необходим ускоритель ионов с энергией до нескольких МэВ. В качестве подобных ускорителей используют или линейные ускорители ионов, ускоряющий высоковольтный потенциал (несколько МВ) на ионном источнике которых обычно получают с помощью т.н. генератора Ван-де-Граафа с последующим выделением ионов Не+ с помощью сепарирующего электромагнита, или циклотроны низких энергий (для современных циклотронов несколько МэВ это низкие энергии). Подобные установки в отличие от установок, описанных в предыдущих лекциях, являются достаточно громоздкими и сложными в обслуживании. Кроме того, для их размещения требуются специальные помещения. Ввиду их большой стоимости, подобные установки обычно эксплуатируются в непрерывном режиме и измерения методом РОР являются только частью их работы.

Если подобный ионный пучок имеется, то для реализации метода РОР требуется лишь энергоанализатор с соответствующей электронной аппаратурой для измерения энергетического спектра обратнорассеянных ионов. Обычно такой энергоанализатор вместе с исследуемыми образцами устанавливается в отдельной вакуумной камере, в которую выводится ионный пучок. В качестве энергоанализатора в методе РОР используют поверхностно-барьерные детекторы (ПБД), принцип действия которых рассмотрен в Лекции 15 Можно использовать и электростатические энергоанализаторы, но при МэВ-ных энергиях ионов они будут иметь достаточно большие размеры и потребуют высоковольтного (~ 0,1 МВ) питания, поэтому в методе РОР они не используются.

Как было показано ранее, аппаратная функция ПБД имеет вид

,

где А = 1020 кэВ.

С учетом аппаратной функции связь между истинным спектром и измеряемым с помощью ПБД имеет вид

,   (29.6)

где

.

Вдали от точки Е = kЕ0 энергетические спектры dN/dE и dNД/dE совпадают, так как при kЕ0Е >> А функция erfc[(ЕkЕ0)/A)] 2. В точке Е = kЕ0 величина dNД/dE в два раза меньше dN/dE, а при Е > kЕ0 происходит плавный спад до нуля dNД/dE, как это показано на рис. 29.3.

В рассматриваемой модели при движении на прямолинейных участках ион теряет энергию, испытывая множество столкновений с электронами. В принципе, это дискретный процесс, подверженный статистическим флуктуациям. Поэтому ионы моноэнергетического пучка, пройдя одинаковый путь в материале образца, будут иметь на выходе некоторый разброс по энергиям, который называется (энергетический) страгглинг. Страгглинг устанавливает конечный предел точности определения энергии и, как будет показано ниже, разрешения метода по глубине образца.

Для расчета распределения потерь энергии иона (страгглинга) после прохождения слоя толщиной t воспользуемся моделью, предложенной Н. Бором. В этой модели принимается, что распределение потерь энергии Е является Гауссовым, если величина Е мала по сравнению с энергией на входе Е0, т.е. вероятность того, что потери энергии принадлежат интервалу от Е до Е + d(Е) равна

,

где В – среднеквадратичное отклонение.

Кроме того, предполагается, что в слое толщиной t, с концентрацией электронов Z2n0 электронные потери энергии , поэтому

,

аналогично среднеквадратичное отклонение

.

Как было показано ранее, дифференциальное сечение по переданной энергии Т для кулоновского потенциала имеет вид

.

В нашем случае = m1/me, q1 = Z1e и q2 = e, поэтому дифференциальное сечение

,

где v0 – скорость ионов перед входом в слой толщиной t.

Следовательно

.

Так как Tmax = 4E0/(1 + )2  4meE0/m1 = 2mev02 >> Tmin = , то

(29.7)

и, следовательно, в модели Бора страгглинг не зависит от энергии ионов, но растет пропорционально . 

Так как полная ширина на половине высоты максимума распределения (ПШПВ) Е для Гауссового распределения в = 2,35 раза превышает стандартное отклонение, то ЕВ = 2,35В. Оценим, при каких толщинах t вклад от страгглинга для ионов гелия равен ширине энергетического окна ПБД ЕВ = А = 15 кэВ. Для оценки примем, что для всех элементов таблицы Менделеева n0 = 51022 атом/см3. График зависимости t(Z2) приведен на рис. 29.4. Из графика видно, что эффект страгглинга необходимо учитывать при толщинах больших 1000 Å.


 

А также другие работы, которые могут Вас заинтересовать

4906. Споживні властивості макаронних виробів торгової марки «Чумак» Вермішель та Ракушки 963 KB
  Макаронні вироби дуже поживні через те, що складаються з пшеничного борошна і для їх приготування вже для вживання безпосередньо в їжу не потрібно багато часу і вмінь. Найчастіше їх вживають як гарнір до будь-яких мясних страв або як самостійне блюдо.
4907. Клиент-серверные приложения на основе сервлетов 220 KB
  Клиент-серверные приложения на основе сервлетов Рассматривается методика построения Web-приложений на основе сервлетов. Приводятся примеры построения сервлетов в среде JBuilder и доставки (разворачивания) сервлетов на сервер Tomcat. 1.1. Базовая стр...
4908. Технология активных серверных страниц 110.5 KB
  Технология активных серверных страниц Рассматривается методика построения Web-приложений на основеактивных серверных страниц Java (JSP). Приводятся примеры построения JSP-страниц в среде JBuilder и доставки страниц на сервер Tomcat. 1. Структу...
4909. Клиент-серверные взаимодействия на основе сокетов 80 KB
  Клиент-серверные взаимодействия на основе сокетов Рассматривается методика построения Web-приложений на основе сокетных соединений. Приводятся примеры построения клиентских и серверных приложений, реализующих клиент-серверные взаимодействия. Техн...
4910. Основы программирования на языке турбо паскаль 2.87 MB
  Язык программирования Паскаль, разработанный в 1970 г. профессором Швейцарской высшей политехнической школы Никлаусом Виртом специально для целей обучения студентов, быстро завоевал широкую популярность благодаря своей простоте, логичности языковых ...
4911. Разработка программы-эмулятора для заданной гипотетической ЭВМ 2.3 MB
  В настоящее время получило широкое распространение использование микропроцессоров в качестве встроенных элементов систем автоматического управления,в том числе как управляющих блоков периферийных узлов вычислительных комплексов. Функции...
4912. Алгоритмы и основы программирования 651.5 KB
  Алгоритмы и основы программирования. Краткое содержание: Этапы создания компьютерной программы. Понятие алгоритма. Виды алгоритмов. Представление алгоритмов в виде блок-схем. Понятие о программировании. Системы и языки программирования. Запись алгор...
4913. Организация списочных и древовидных структур 16.05 KB
  Организация списочных и древовидных структур. В тех случаях, когда количество данных, обрабатываемых программой, заранее не известно или изменяется в процессе работы программы, использовать жестко определённые типы данных (массивы) не рационально ил...
4914. Конструкторы и деструкторы 17.73 KB
  Конструкторы и деструкторы Специальные методы объекта, которые предназначены для выполнения настроечных действий в момент создания каждого экземпляра объекта. В концепции ООП конструктор должен активизироваться автоматически, т.е....