19946

Комплекс испытательных средств для исследования ползучести и состава газообразных продуктов деления

Лекция

Физика

Рассмотреть комплекс испытательных средств для исследования ползучести и состава газообразных продуктов деления, взаимосвязи его систем с облучательными устройствами и испытуемыми образцами. Обратить внимание на унификацию узлов установок, их объединение в облучательное устройство в зависимости от поставленных задач. Представить схему измерений комплекса и его элементы, параметры при испытании топливных композиций. Познакомить слушателей с газовым стендом, спектрометрическим комплексом и электроосадителем.

Русский

2013-08-13

329.83 KB

0 чел.

Конспект занятия 18.

Цель.

   

   Рассмотреть комплекс испытательных средств для исследования ползучести и состава газообразных продуктов деления, взаимосвязи  его систем  с облучательными устройствами и испытуемыми образцами. Обратить внимание на унификацию узлов  установок, их объединение в облучательное устройство в зависимости от поставленных задач. Представить схему измерений комплекса и его элементы, параметры при испытании топливных композиций. Познакомить слушателей с газовым стендом, спектрометрическим комплексом и электроосадителем.

План.

1. Комплекс испытательных средств для исследования ползучести и состава газообразных продуктов деления.

2. Унификация узлов  установок, их объединение в облучательное устройство в зависимости от поставленных задач.

3. Схема измерений комплекса. Газовый стенд, спектрометрический комплекс и электроосадитель.

    При проектировании комплекса испытательных средств для исследования ползучести и состава газообразных продуктов деления основное внимание было обращено на конструктивное оформление основного узла установки – высокотемпературной камеры для испытаний.

Учитывая специфику реакторных испытаний на ИРТ – МИФИ, где необходимые температурные режимы для исследования керамического ядерного горючего достигаются при использовании внешнего нагревателя, что и определяет временной ресурс реакторной установки. В основу конструкций реакторных устройств был положен принцип унификации отдельных узлов высокотемпературной реакторной камеры. Для всех установок типа «Крип-ВТ» (установка для исследования радиационной ползучести), «Приз» (установка для исследования ГПД при высоких температурах), «Каприз-ВТ» (установка для совместного исследования радиационной ползучести и выхода ГПД при высоких температурах) система нагрева образца идентична, хотя и может быть снабжена –

Рис. 2. Конструкция облучательной камеры «Каприз».

1 – корпус, 2 – образец, 3 – червячный преобразователь перемещений,

4 – измерительные штоки, 5 – верхний фланец, 6 – токовводы,

7 – твердосплавные проставки, 8 – пуансоны, 9 – экраны, 10 –нагреватель,

11 – направляющие нагружающего устройства, 12 – термопары,

13 – нижний фланец.

в зависимости от исследуемых материалов – нагревателями из вольфрама, тантала или графита. Соединение нагревательной системы с узлом нагружения и соответствующим рабочим участком приводит к появлению одной из модификаций указанных установок в зависимости от поставленных задач. Аналогичный принцип выдерживается в серии низкотемпературных устройств «Крип-НТ» и «Каприз-НТ», за исключением рабочего участка с образцами, который не может быть заменен в процессе эксперимента. Схема измерений комплекса испытательных средств для исследования состава ГПД при ползучести UO2 показана на рис.1.

Высокотемпературная камера установки «Каприз-ВТ» для исследования ядерного горючего на ползучесть с одновременным определением выхода ГПД в условиях реактора ИРТ-МИФИ показана на рис.2.

Она представляет собой оболочку (1) диаметром 170 мм, герметично закрытую верхним (5) и нижним (13) фланцами. Внутри оболочки на кронштейнах, которые являются направляющими измерительных штоков (4), крепятся тепловые экраны (9). Нагреватель Ω - образной формы (10), токоподводы (6) и тепловые экраны образуют нагревательную систему камеры. Перечисленные элементы крепятся на верхнем фланце. Для изготовления нагревателя и ближних к нагревателю экранов используется вольфрамовый лист.

На нижнем фланце (13) смонтирован узел нагружения, представляющий собой герметичный цилиндр, в который вварен сильфон из нержавеющей стали, работающий на сжатие под действием давления газа, подаваемого по трубопроводу. Усилие через шток (4) из нержавеющей стали, молибденовый держатель и пуансон из вольфрама (8) передается образцу, размещенному в молибденовом стакане рабочего участка.

В проставки (7) ввинчивается молибденовый держатель, в котором закреплен вольфрамовый пуансон (8). В держатели и пуансоне сделано соосное отверстие для подвода термопары (12) к образцу. Образец (2) в центровочной обойме, выполненной из тонкого листового молибдена, помещается в молибденовый стакан, который удерживается от перемещения вниз с помощью винтов, входящих в клиновые пазы держатели. Для соосности нижнего пуансона имеются направляющие нагружающего устройства (11). Слайд 11

Образец размещается между верхним и нижним пуансонами, в которых имеются каналы для протока газа-носителя. Газ-носитель, омывая образец, направляется через верхнюю штангу к газовому стенду.

Деформация образца в процессе ползучести фиксируется терморадиационностойким индуктивным датчиком через измерительные штоки (4). Для увеличения диапазона до 10мм используется червячный преобразователь перемещений (3) позволяющий перемещать катушку индуктивного датчика относительно его сердечника в процессе эксперимента.

Величина перемещения корпуса датчика при последующей модернизации определялась по числу оборотов специально установленного сельсина. Деформация образца фиксируется самопишущим прибором. В случае изменения характеристики датчика под действием облучения деформация образца может оцениваться по числу оборотов сельсина, при этом индуктивный датчик выполняет роль контактной головки.

Измерение параметров проводилось различными преобразователями с соответствующими приборами:

- температура измерялась термоэлектрическими преобразователями в комплекте с потенциометрами.

- механическое напряжение на образцах создавалось в установках с помощью газовой сильфонной нагружающей системы. Измерение механического напряжения производилось манометрами в комплекте с вторичными приборами.

- нейтронный поток на образце измерялся методом активационного анализа с использованием медных индикаторов и термонейтронным датчиком.

- поток газообразных продуктов деления фиксировался γ – спектрометром с анализатором импульсов и электроосадителем типа «Карадаг» с регистрацией кривых распада. Измерение газа – носителя продуктов деления через рабочий участок производилось с помощью U – образных манометров, заполненных водой, соединенных с капилляром, который представляет достаточное гидравлическое сопротивление при измерение расхода от 5·103 до 50·103 см3/час.

- система вакуумирования и очистка газа обеспечивает необходимую среду для испытания. Вакуумирование рабочего объема устройств, производилось стандартным вакуумным насосом типа ВИТ – 1АП. Инертный газ перед поступлением в устройство осушался и очищался с помощью цеолитовых и угольных ловушек, охлаждаемых жидким азотом.

- регулирование температуры может производиться высокоточным регулятором температуры типа ВРТ-3 через собственный выходной блок при использовании в установке низкоомного нагревателя и низковольтного трансформатора типа ОСУ.

На том же рис.2 с правой стороны показано местоположение внеканальной сборки около активной зоны реактора ИРТ-МИФИ. Штанга имеет свинцовую защиту, которая крепится в стальной обойме и предохраняет обслуживающий персонал от прямого излучения, проникающего по несущему трубопроводу во время работ, связанных с перегрузкой образца.

Газовый стенд предназначен для подачи газа-носителя, транспортировки ГПД к месту измерения активности, обеспечения соответствующей выдержки ГПД перед выбросом в спецвентеляцию, а также для контроля давления и расхода газа – носителя. Газ подаётся из баллонов

(v = 40 л, p = 150 кгс/см2) после редуцирования до избыточного давления 0,1 кгс/см2. Расход газа может быть направлен по байпасной (по отношению к ампуле) линии и таким образом обеспечить продувку выходной части стенда чистым газом. Вместе с ГПД газ – носитель может быть направлен в тракт электроосадителя, аналитический участок датчика, а также через ёмкость задержки. Перед выбросом ГПД в спецвентеляцию осуществляется их задержка в ёмкости выдержки. Расход газа определяется расходомером по перепаду давления газа – носителя на капилляре.

Емкость задержки

Емкость выдержки

ППД

ГПД для ППД

АЗ

Капилляр

U-образный манометр

Образец

Высокоточный редуктор

Газовый

баллон

Вентиль

Вентиляция

                                            

                                         Электроосадитель           

ФЭУ

Камера осаждения

Пятно

осаждения

Спектрометрический комплекс IN – 96 включает в себя детектор гамма – излучения, анализатор импульсов и ЭВМ. ППД – полупроводниковый детектор GeLi предназначен для выдачи импульса тока в результате взаимодействия гамма – квантов с энергией 50 – 1000 кэВ с материалом детектора. Образуемые в чувствительном объёме неравновесные электроны и дырки коллектируются на электроконтактах. Количество электронов и «дырок» пропорционально энергии, потерянной квантами. Импульс тока на выходных электродах преобразуется в импульс заряда. Результирующее распределение импульсов по их амплитудам (пропорциональным энергии квантов) фиксируется в памяти и может быть подвергнуто анализу по соответствующей программе. Машинная память может задавать режим ввода и обработки спектров; производить расчеты, используя как вводимую информацию и программу, так и введённую ранее.

Внешние системы - дисководы, дисплей с клавиатурой, магнитофон, перфоратор, считыватель, плоттер обеспечивают управление комплексом и оперирование информацией.

Электроосадитель предназначен для регистрации короткоживущих ГПД, имеющих подходящие постоянные распада и дочерние радионуклиды. Газ – носитель вместе с ГПД проходит через камеру осаждения. За время пребывания в камере образованные в результате распада материнских ядер

( 88Kr, 138Xe) дочерние ионы (88Rb, 138Cs) электростатическим полем ( U ≈ 500 вольт) осаждаются на металлическую нить, образуя «пятно осаждения». При движении нить наматывается на барабан и сматывается с него. В электроосадителе применен сцинтилляционный датчик на основе β чувствительного кристалла и ФЭУ – 13. Для уменьшения фона пространство под кристаллом продувается чистым газом навстречу основному потоку газа – носителя. Питание датчика осуществляется от стендового источника. Сигнал фиксируется в виде тока на интенсиметре и записывается на самопишущем приборе.

                                            П           

Газ-носитель

Газ- носитель с ГПД

Электроосадитель управляется с пульта. Пульт может обеспечить дискретную регулировку времени счета (и осаждения) «пятна», непрерывную или дискретную (шагами) перемотку нити в прямом и обратном направлении, включение напряжения, подаваемого на камеру осаждения.

Измеритель скорости счета предназначен для оценки радиационной обстановки на рабочих местах, а также для качественной оценки времени неустановившегося режима по активности газа – носителя.


 

А также другие работы, которые могут Вас заинтересовать

44572. Понятие топологии сети и базовые топологии 31 KB
  Термин топология сети или просто топология характеризует физическое расположение компьютеров сетевых сред передачи данных и других компонентов сети. Топология – это стандартный термин который: используется при описании основной компоновки сети; дает способ сравнивать и классифицировать различные сети. Топология сети обуславливает ее технические характеристики.
44573. Топология типа «шина» 82.5 KB
  В ней используется один сетевой кабель именуемый магистралью или сегментом вдоль которого подключены все РС сети. Пакет в виде электрических сигналов передается по шине в обоих направлениях всем компьютерам сети. Так как в каждый момент времени в сети может вести передачу только одна РС то производительности ЛВС зависит от количества РС подключенных к шине. Чем их больше тем больше ожидающих передачи данных тем ниже производительности сети.
44574. Топология типа «звезда» 65.5 KB
  Основное достоинство этой топологии в том что если повреждена какая-либо РС или отдельное соединение между РС и концентратором вся сеть остается работоспособной. Как недостатки организации такой топологии следует отметить следующее: Так как все РС подключены к центральной точке то для больших ЛВС значительно увеличивается расход кабеля. Концентраторы являются центральным узлом в топологии звезда.
44575. Топология типа «кольцо» 41 KB
  Кроме того изменение конфигурации сети или подключение новой РС требует остановки всей сети.
44576. Комбинированные топологии 66 KB
  Звезда –шина strbus - это комбинация топологий шина и звезда Чаще всего это выглядит так: несколько сетей с топологией звезда объединяются при помощи магистральной шины. Топология €œзвезда-кольцо Звезда-кольцо strring – кажется похожей на звезду-шину И в том и в другом случае компьютеры подключены к концентратору который фактически формирует кольцо или шину.
44577. Сравнительные характеристики топологий 31.5 KB
  При значительных объемах трафика уменьшается пропускная способность; трудная локализация проблем; выход из строя кабеля остановит работу пользователей. выход из строя одной РС выводит из строя всю сеть; трудно локализовать проблемы; изменение конфигурации сети требует остановки всей сети. Звезда легко модифицировать сеть добавляя новые РС; централизованный контроль и управление; выход из строя РС не влияет на работу сети. Выход из стоя центрального концентратора выводит из стоя всю сеть.
44578. Методы доступа, Коллизия в сети 87 KB
  Коллизия в сети Наибольшее распространение при проектировании и построении ЛВС получили два метода доступа зто: Множественный доступ с контролем несущей и обнаружением коллизии CSM CD CrrierSense Multiple ccess nd Collision Defection. Алгоритм работы рабочей станции а точнее ее сетевого адаптера при использовании первого метода доступа заключается в следующем: 1. Вдумайтесь в название этого доступа.
44579. Типы и компоненты беспроводных сетей 30 KB
  В зависимости от технологии беспроводные сети подразделяют на: локальные вычислительные сети; мобильные вычислительные сети. Их можно устанавливать как на автономно работающих компьютерах так и на компьютерах подключенных к сети. Трансивер - это устройство для подключения компьютера к сети т.
44580. Инфракрасные и лазерные беспроводные ЛВС 41.5 KB
  Инфракрасные сети нормально функционируют на скорости 10 Мбит с. Различают 4 типа инфракрасных сетей: Сети прямой видимости между приемником и передатчиком. Сети на рассеянном излучении.