19949

Частные случаи решения задачи и их сопоставление с экспериментальными результатами

Лекция

Физика

Рассмотреть частные случаи решения задачи и сопоставить их с экспериментальными результатами. Обосновать дополнительные гипотезы о связях между параметрами переноса и необходимость их введения при решении задачи по восстановлению параметров по экспериментальным данным. Представить методику определения энергий активации и предэкпоненциальных членов коэффициентов диффузии.

Русский

2013-08-13

41.7 KB

0 чел.

Конспект занятия 21.

Цель.

Рассмотреть частные случаи решения задачи и сопоставить их с экспериментальными результатами. Обосновать дополнительные гипотезы о связях между параметрами переноса и необходимость их введения при решении задачи по восстановлению параметров по экспериментальным данным. Представить методику определения энергий активации и предэкпоненциальных членов коэффициентов диффузии.

План.

1. Частные случаи решения задачи и их сопоставление с экспериментальными результатами.

2. Дополнительные гипотезы о связях между параметрами переноса.

3. Методика определения энергий активации и предэкпоненциальных членов коэффициентов диффузии.

 

Относительный выход ГПД с внешней поверхности образца (отношение выхода газа с поверхности образца в единицу времени к количеству газа образующегося в образце в единицу времени) по механизму диффузии по границам зерен имеет следующий вид:

х                                  (7)

Рассмотрим важные для нас два частных случая, вытекающих из уравнения (7). Для обоих случаев DL,Dgb << 1 и квадратные скобки, содержащие эти величины становятся равными единицам.

                                       (7-1)

  

Предположим теперь:

1. А   >> λ  и

                                   (8)

2. А   << λ  и

                                          (9)

  Коэффициенты диффузии в соотношениях (8) и (9) являются функциями температуры:

 

DL = DL0 Exp(-QL /T)                                                   (10)

Dgb = Dgb0 Exp(-Qgb /T)                                               (11)

Соотношения между эмпирически определенными энергиями активациями в уравнениях (3) и (4) предыдущей главы и энергиями активации в соотношениях (8) и (9) определяются следующими соотношениями:

QЭ =0,5 Qgb + 0,25 QL                                                (12)

для уравнения (8)  и

QЭ =0,5 Qgb + 0,5 QL                                                  (13)

для уравнения (9).

  Важным фактом, вытекающим из анализа соотношений (8) и (9), является зависимость выхода от постоянной распада λ .

  Эта зависимость для уравнения (8)

Fgb ~ λ (-0.75)                                                                  (14)

и для уравнения (9)

Fgb ~ λ (-1.00)                                                                  (15)

  Обратим внимание на соотношения (3) и (4). Зависимости от постоянной распада в этих эмпирических  соотношениях отличаются от полученных в результате рассмотрения аналитических решений (8) и (9) на 5% для образцов f и на 2% для образцов с соответственно. Это различие лежит в пределах  погрешности эксперимента, поэтому примем за основу возможность проведения дальнейшего анализа на основе соотношений (3) для образцов f и (4) для образцов с.

4. Методика восстановления параметров диффузионного переноса по экспериментальным данным выхода газов - продуктов деления.

 

4. 1. Методика обработки экспериментальных данных.

Аналитические соотношения для определения выхода газов продуктов деления, как функция от коэффициентов диффузии обладает значительной неопределенностью, что приводит к необходимости формулировки дополнительных гипотез о связях между параметрами переноса.

Установим общие правила обработки экспериментальных данных для решения основной задачи дипломного проекта: восстановления параметров переноса на основе двухстадийной диффузионной модели.

  

  Эти правила [34] и [31] сводятся к следующему:

- анализ производится на основе программы Statistica 6 с использованием её линейной и нелинейной подпрограмм.

- зависимость от постоянной распада определяется соотношениями (8) для образца f и (9) для образца с.

- коэффициенты диффузии являются функциями температуры в соответствии с соотношениями (10) и (11).

- соотношения (12) и (13) между энергиями активации являются желательными.

- энергии активации зернограничной диффузии меньше энергий активации объёмной для данного типа образцов и их отношения могут составлять величину от 0,2 до 0,8.

- близкие значения энергий активации объёмной диффузии рассматриваются как предпочтительные  для образцов с и f.

- отношение  зернограничных и объёмных коэффициентов диффузии должно находится в пределах 103- 106.

 

Энергии активации объёмной и зернограничной диффузии.

Рассмотрим связи между энергиями активации.

Уравнения (12) для образца f и уравнение (13) для образца с представляют собой систему:

QЭф =0,5 Qgbф + 0,25 QLф                                           (16)

QЭс =0,5 Qgbс + 0,5 QLс                                               (17)

где

QЭф, QЭс - эффективные (эмпирические) энергии активации выходов ГПД для образцов f и с соответственно.

Qgbф, Qgbс - энергии активации зернограничной диффузии для образцов f и с.

QLф, QLс - энергии активации объёмной диффузии для образцов f и с.

Предположим, что энергии активации объёмной диффузии для образцов f и с одинаковы, а отношения зернограничных энергий активации к объёмным известны, тогда:

QLф= QLс= QL                                                                                                (18)

Qgbф=nф QL                                                                  (19)

Qgbс=nc QL                                                                   (20)

Выше представленные соотношения подставим в уравнения (16) и (17):

QЭф =0,5 nф QL + 0,25 QL                                          (21)

QЭс =0,5 nc QL + 0,5 QL                                              (22)

Просуммируем уравнения (21) и (22):

QЭф+ QЭс=0,5 QL[(nф+ nc)+1.5]                                (23)

Рекомендованное в [34] каждое из значений n ~ 0. 5, поэтому примем их сумму равной 1, и из уравнения (20) получим значение  QL=0,8(QЭф+ QЭс) = 21493 К, эта величина энергии активации объёмной диффузии дает возможность определить значение отношений энергий активации зернограничной и объёмной диффузии - уравнения (21), (22), и значения самих энергий активации зернограничной диффузии: Qgbф = 17904 К и

Qgbс = 3589К.

Полученное значение энергии активации объёмной диффузии

QL = 21493 К ГПД практически совпадает с энергией активации радиационно-стимулированного коэффициента объёмной диффузии ГПД по механизму вытеснения междоузельных ионов при диффузии ГПД в коаксиальной зоне трека (КАЗТ), которая составляет 22620 К по расчетам представленным в работах [35, 36].

Предэкспоненциальные множители коэффициентов диффузии и параметры переноса.

Уравнения (8) для образца f и (9) для с можно представить в следующем виде: 

   (24)

                    (25)

В левой части этих соотношений представлены приведенные по постоянной распада выходы ГПД для образца типа f (24) и образца с (25), в правой части содержатся эффективные значения энергий активации, удовлетворяющие соотношениям (16) и (17) в соответствии с методикой выбора, представленной в предыдущем разделе.

Используя программу статистики для всего массива экспериментальных данных, можно определить значения множителей перед экспонентой для образцов f и с соответственно, эти значения равны множителям в уравнениях (3) и (4). Подставляя в уравнения (24) и (25) значения геометрических параметров образцов и пористости, а также используя предположения о связи между коэффициентами зернограничной и объёмной диффузии вида:

Dgbf0=mf* DLf0                                                               (26)

Dgbc0=mc* DLс0                                                               (27)

После подстановки соотношений (26) и (27) в выражения (24) и (25), множители перед экспонентами будут составлять систему вида:

                                   (28)

                                           (29)

Предположим теперь, что DLf0 = DLс0 и после подстановки конкретных значений в систему уравнений (28), (29) получим следующее уравнение:

                                                       (30)

Соотношение (30) необходимо рассмотреть при дополнительных условиях:

ξf , ξc ≤ 1,                                                                      (31)

103 ≤  mf ,  mc  ≤  106                                                       (32)

Случай ξf = ξc , mf = mc  противоречит физическому смыслу, т.к. не выполняется соотношение (31) при соблюдении условия (32).

Рассмотрим случай mf = mc , тогда уравнение (30)  имеет вид:

                                                          (33)

    


 

А также другие работы, которые могут Вас заинтересовать

10090. Отечественная история. Образование Древнерусского государства IX-X вв. Отечественная культура 1-й половины XIX в. 387 KB
  Отечественная история Образование Древнерусского государства IXX вв. Монголотатарское нашествие на Русь и борьба против него. Причины возвышения Московского княжества и его роль в формировании Русского централизованного государства. Внутренняя и внеш
10091. Понятие, содержание, основные механизму корпоративного управления 86.48 KB
  В США 25 млн. владеют акциями 50 млн. ценными бумагами корпораций т.е. каждый 5 чел. В Швеции каждый второй. Раздел 1. Корпоративное управление 1.1 Понятие корпоративного управления его основные элементы Corporate Governance. Корпорация объединение союз ...
10092. Промислово-фінансова група (ПФГ) 124.45 KB
  Промисловофінансова група ПФГ обєднання до якого можуть входити промислові підприємства сільськогосподарські підприємства банки наукові і проектні установи інші установи і організації всіх форм власності що мають на меті отримання прибутку і яке створюєть...
10093. Англо-американская модель корпоративного управления 230 KB
  Англо американская модель корпоративного управления. Структура управления крупными промышленными фирмами формируется под влиянием различных факторов. С одной стороны это требования выдвигаемые ростом масштабов производства усилением его диверсификации и усложне
10094. Мотивы слияний 151.16 KB
  Мотивы слияний Масштабы и темпы слияний в экономике США весьма значительны. В периоды наиболее активных слияний финансовые менеджеры посвящают много времени либо поиску потенциальных объектов слияния либо напротив защите от фирмагрессоров выступающих инициато...
10095. Анализ экономических выгод и издержек слияний 77.6 KB
  Анализ экономических выгод и издержек слияний Допустим вы являетесь финансовым менеджером компании А и хотите проанализировать возможную покупку компании Б. Тогда первое о чем вам надо подумать это экономические выгоды слияния. Подобные выгоды возникнут только п
10096. Оценка издержек слияний 70.57 KB
  Оценка издержек слияний Главный принцип используемый при принятии решения о слиянии: слияние следует проводить если выгоды выше издержек. Рассмотрим подробнее издержки слияния. Оценка издержек слияния финансируемого за счет свободных денежных средств Изде
10097. Механизм слияний. Формы слияний 81.84 KB
  Механизм слияний 1. Формы слияний 1. Объединение двух компаний Предполагает что одна из участниц сделки принимает на свой баланс все активы и все обязательства другой компании. Для применения такой формы необходимо добиться одобрения сделки не менее чем 50 акцион
10098. Тактика слияний 117.12 KB
  Тактика слияний 1. Способы слияний Во многих случаях слияния проводятся по взаимному согласованию между менеджерами обеих компаний. Однако нередки ситуации когда компанияинициатор слияния в обход менеджеров компаниимишени обращается непосредственно к акцион...