19953

Современный этап развития ядерной энергетики. Реакторы на тепловых и быстрых нейтронах

Лекция

Физика

Конкретные пути решения задач, поставленных Президентом, представлены в «Стратегии развития ядерной энергетики России до середины XXI века», принятой Минатомом России в 2000-м году и одобренной Правительством РФ. В последующие годы были разработаны и приняты к исполнению ряд конкретных программ по направлениям. Некоторые из них включают разделы связанные непосредственно с решением проблем экологии и выводом АЭС из эксплуатации, эти задачи обеспечиваются значительной финансовой поддержкой.

Русский

2013-08-13

87.44 KB

12 чел.

Конспект занятия 1.

Цель.

Дать общие представления о современном этапе развития атомной энергетики. Рассмотреть последовательность этого развития от первоначальной идеи к техническому воплощению, основываясь на конкретных примерах и исторической хронологии.

План.

  1. Современный этап развития ядерной энергетики. Реакторы на тепловых и быстрых нейтронах.
  2. Концепция Э. Ферми и А. Лейпунского. Историческая справка о развитии реакторов на быстрых нейтронах.  
  3. Энергетические реакторы на быстрых нейтронах: действующие и перспективные, их сравнительные характеристики, проблемы безопасности.

Развитие человеческой цивилизации всегда было связано с поиском и использованием источников энергии. Прошлый и настоящий век в истории, наверное, будут названы веками освоения и использования энергии атома.

Инициатива Президента Российской Федерации 6 сентября 2000 года в ООН непосредственно касалось будущего развития ядерной энергетики. Отмечены следующие наиболее важные, в том числе политически, моменты развития современной энергетики:

- обеспечение устойчивого развития человечества энергией без ограничений со стороны ресурсов топлива и отравления внешней среды продуктами горения.

- закрытие каналов получения «ядерной взрывчатки», связанной с ядерной энергетикой.

- завершение сокращения ядерных арсеналов, начатого РФ и США, всеобщим и полным запрещением и ликвидацией ядерного оружия.

Конкретные пути решения задач, поставленных Президентом, представлены в «Стратегии  развития ядерной энергетики России до середины XXI века», принятой Минатомом России в 2000-м году и одобренной Правительством РФ. В последующие годы были разработаны и приняты к исполнению ряд конкретных программ по направлениям. Некоторые из них включают разделы связанные непосредственно с решением проблем экологии и выводом АЭС из эксплуатации, эти задачи обеспечиваются значительной финансовой поддержкой.

Необходимо подчеркнуть существенную разницу двух направлений развития ядерной энергетики при использовании реакторов на тепловых и быстрых нейтронах[1].

Первое направление (реакторы на тепловых нейтронах) в настоящее время весьма широко используется в ядерной энергетике, но имеет ряд существенных недостатков:

- проблема топливных ресурсов решается за счет увеличения добычи урана.

- радиоактивные отходы в основной своей массе не перерабатываются, а захораниваются.

- вопросы безопасности сводятся к рассмотрению наиболее вероятных аварий, увеличению требований к оборудованию и персоналу.

-проблема нераспространения решается усилением контроля за делящимися материалами.

Второе направление (реакторы на быстрых нейтронах) в настоящее время не имеют широкого применения в ядерной энергетике, но представляются достаточно перспективными по следующим причинам:

- проблема топливных ресурсов может быть решена естественным воспроизводством ядерного топлива в реакторах на быстрых нейтронах.

- радиационно-эквивалентное захоронение радиоактивных отходов без нарушения природного радиационного баланса за счет глубокой очистки отходов, возвращения и сжигания их в быстрых реакторах.

- естественная безопасность подразумевает исключение тяжелых аварий за счет присущих быстрым реакторам внутренних физических качеств и закономерностей.

Считаю  необходимым привести цитату из лекции профессора В.В.Орлова [1]:

  «Недавно стали известны выступления Э.Ферми в 1944г.- создателя первого в мире ядерного реактора (Чикаго,1942 г.)- относительно использования ядерной энергии в мирных целях. Основную цель он видел в овладении ресурсами ядерного топлива на основе воспроизводства. К тем же идеям в СССР в 1947г. пришел А.И. Лейпунский (ФЭИ, г. Обнинск).

  Они впервые показали, что роль быстрых реакторов в крупномасштабной ядерной энергетике определяется, в первую очередь, уникальным избытком нейтронов в расчете на сгоревшее ядро плутония. Такой избыток служит фундаментальной физической предпосылкой воспроизводства и даже бридинга плутония, решения проблем безопасности, радиоактивных отходов, нераспространения ядерного оружия и связанной с ним экономики »

Рассмотрим хронологическую последовательность разработки объектов ядерной энергетики, использующей реакторы на быстрых нейтронах (РБН). Нас будут интересовать (Таблица 1.): страна и дата пуска (остановки), наименование объекта, мощность тепловая, топливо, теплоноситель.

Таблица 1.

США

Дата пуска

(остановки)

Наименование

Мощность

Тепловая

(электри-ческая)

Топливо

Тепло-носитель

СССР

Дата пуска

(остановки)

1949

1951

1963

1963

(1967)

(1967)

(1980)

Клементина

EBR-1

БР-1

БР-2

БР-5

8 РБН для под-водных лодок.

Энрико Ферми EBR-2

EBR-1(авария)

Энрико Ферми

(авария)

БОР-60

БН-350

БН-600

Приостановка

работ по РБН.

25 кВт

(200 кВт)

0 кВт

100 кВт

5 МВт

200(65) МВт 62(20) MBт

60МВт

1000(350)МВт

1800(600)МВт

Pu

U

Pu

Pu

PuО2

U

U

UО2 

UО2- PuО2

UО2- PuО2

Hg

Na-K

Hg

Hg

Na

Pb-Bi

Na

Na

Na

Na

Na

1952

1956

1958

1962

1969

1972

1980

Примечание:

Энрико Ферми - итальянский физик, лауреат Нобелевской премии, один из разработчиков американской атомной бомбы, создатель первого в мире ядерного реактора (Чикаго, 1942 г.)

Александр Ильич Лейпунский - академик УССР, руководитель отечественной программы по РБН, директор Физико-энергетического института (ФЭИ) г. Обнинск, первый декан инженерно-физического факультета Московского механического института боеприпасов (ММИ), названный позднее МИФИ.

В таблице 1 показана история развития программ создания АЭС с РБН в СССР и США.    Программа США не была выполнена.

Программа СССР имеет логическое завершение: успешно работает АЭС с РБН БН-600, 25 лет устойчиво проработал РБН БН-350 в Казахстане (г. Шевченко). Он был выведен из эксплуатации в 1997 году по решению правительства Казахстана.

Во Франции успешно развивается программа по РБН, разработаны и действуют исследовательские РБН Рапсодия и Рапсодия-форте, эксплуатируются АЭС с РБН Феникс и Супер-Феникс.

Почему «подарок природы», выраженный в концепции Энрико Ферми и Александра Ильича Лейпунского, не воплотился в широкомасштабную атомную энергетику?

По моему мнению, главной причиной являлся интерес к собственной, государственной безопасности стран, способных реализовать  в тот период времени подобный проект. Способ получения плутония в тепловых реакторах был более очевиден и дешев, что дало в конечном итоге иметь достаточное количество атомных зарядов противоборствующим сторонам, что бы, как не странно, сохранить на земле относительный мир и жизнь.

После тяжелых аварий на АЭС в «Три-Майл Айленд» (США, 1979 г.) и в Чернобыле (СССР, 1986г.) снизился интерес к атомной энергетике как основной альтернативе углеводородной. Разработчиками АЭС в последние 15 лет сделано не мало для обеспечения безопасной работы действующих и проектируемых АЭС.

Настоящий период развития ядерной энергетики часто называют ренессансом. Каким будет возрождение, покажет время.

На графике (рис. 1) представлен прогноз изменения мощности электростанций в мире при использовании топливного потенциала ядерной энергетики с РБН и РТН. Из представленного графика видно, что использование в АЭС:

Рис. 1.Топливный потенциал развития ядерной энергетики

при использовании быстрых реакторов.

    - РТН приводит исчерпанию запасов 235-го урана к 2080 году, а плутония к 2100 году. Введение же в оборот технологически существенно более сложного ториевого цикла приводит к незначительному росту вводимых мощностей.

    - РБН приводит к устойчивому значительному росту вводимых мощностей из-за высокого по сравнению РТН коэффициенту воспроизводства и вовлечения в энергетику плутония, полученного из 238-го урана.

    Следует остановиться ещё на одном  важном вопросе: какое экологическое наследие мы оставим нашим потомкам?

На рис.2 представлена зависимость десятичного логарифма приведённой активности от времени хранения радиоактивных отходов, кривые 1-3 соответствуют различной степени очистки с учётом их качественного состава. Исходя из определения S, зеленая и коричневая горизонтальные прямые соответствуют активности отходов равной природной урановой среде и десятикратное её превышение соответственно.

Рис.2. Радиационная эквивалентность топливного цикла крупномасштабной ядерной энергетики.

Приведу цитату из [1]: «Радиационно-эквивалентное захоронение радиоактивных отходов (без нарушения природного радиационного баланса) за счет глубокой очистки отходов от всех актиноидов, возвращения и сжигания их (трансмутации) в быстрых реакторах (актиноиды - семейство из радиоактивных элементов (металлов) с Z=90-103, образующихся в результате захвата нейтронов с последующими бета-распадами). Стратегическим направлением здесь является замыкание ядерного топливного цикла, в результате чего достигается а) практически полное использование природного ядерного топлива и искусственных делящихся материалов (плутония и др.), б) минимизация образования радиоактивных отходов от переработки ядерного топлива и в) обеспечение баланса (равенства) между радиационной опасностью захораниваемых радиоактивных отходов и урана, извлекаемого из недр.» 

Кривая 1 (рис 2.) соответствует сегодняшнему положению дел в этой области, кривая 3 – при широком использовании  АЭС с РБН и замкнутого цикла, кривая 2- некоторый промежуточный вариант.

В таблице 2 представлены технико-экономические показатели АЭС с быстрыми и тепловыми реакторами РФ (в ценах 1991 г.), сравниваются проектируемые АЭС с показателями действующей на базе реактора ВВЭР-1000.

Таблица 2.

Характеристика

Брест-1200

БН-800

ВВЭР-1000

ВВЭР-1500

Удельные капитальные вложения, (руб/кВт)

875

1106

920

827

Себестоимость отпускаемой электроэнергии, коп/кВт-час

1,5

2,49

2,11

1,62

Срок службы, лет

60

30

40

50

Собственные нужды, %

5,7

7,6

5,8

5,7


 

А также другие работы, которые могут Вас заинтересовать

1849. СЕМАНТИЧЕСКАЯ ИЗОТОПИЯ ЕДА В ХУДОЖЕСТВЕННОМ ТЕКСТЕ (НА МАТЕРИАЛЕ МАЛОЙ ПРОЗЫ 60-80-Х ГОДОВ ХХ ВЕКА) 1.26 MB
  Гносеологическая и онтологическая сущность семантической изотопии еда. Фрагмент языковой картины мира, репрезентируемый семантической изотопией еда. Реализация семантической изотопии еда в событийном пространстве текста. Ритуализованные формы речи. Застолье, чаепитие, распивание спиртных напитков.
1850. ОБРАЗ ЖИЗНИ БРИТАНСКОЙ ЭЛИТЫ В ТРЕТЬЕЙ ЧЕТВЕРТИ XIX ВЕКА 1.26 MB
  Изменение положения британской элиты в третьей четверти XIX в. Распределение социального, экономического и политического влияния в элитных группах британского общества. Трансформация ценностных ориентиров элитных групп. Досуговая культура средневикторианского высшего общества.
1851. ПЕДАГОГИЧЕСКИЕ АСПЕКТЫ ПРЕОДОЛЕНИЯ НЕГАТИВНЫХ ПОСЛЕДСТВИЙ УЧЕБНЫХ ФАКТОРОВ РИСКА, ОТРАЖАЮЩИХСЯ НА ЗДОРОВЬЕ УЧАЩИХСЯ КОЛЛЕДЖА 1.26 MB
  Современные научные подходы к выделению факторов риска в образовательном процессе. Педагогические подходы в выявлении негативных последствий учебных факторов риска, отражающихся на здоровье учащихся колледжа. Изучение взаимосвязи учебных факторов риска и состояния здоровья учащихся. Анализ результатов изучения педагогических подходов к преодолению учебных факторов риска в образовательном процессе колледжа.
1852. СЕМАНТИЧЕСКИЕ, ГРАММАТИЧЕСКИЕ И ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ СЛОВА 1.26 MB
  Аспекты изучения проблемы переходности в области неполнозначных слов. Трудные случаи морфологической квалификации слова так. Пословицы, поговорки, крылатые выражения с элементом так. Возможности транспозиции слова "так".
1853. Промисловий аналіз продуктів какао 337.08 KB
  Какао продукти, какао напої та екстракти. Какао як продукт харчування. Виробництво шоколаду. Кондитерська промисловість. Замінники какао-масла.
1854. Теории и современные воспитательные концепции 163 KB
  Современные воспитательные концепции. Системное построение процесса воспитания. Воспитательная система образовательного учреждения. Характеристика компонентов воспитательной системы. Педагогическая поддержка ребенка и процесса его развития.
1855. Оружие геноцида 3.13 MB
  “Нормальная” культура ненормальных людей. Общее воздействие алкоголя на организм. Гипоксия — алкогольная эйфория. Почему пьющие избегают трезвых. О главной причине употребления психотропов. Творчество под угнетением табака. Курение и детородная функция. Целомудрие здравомыслие.
1856. Сегментация изображений и поиск объектов медицины и биологии 3.01 MB
  Программные системы и методы 3D-реконструкции биомедицинских данных. Модели, методы и алгоритмы, положенные в основу сегментации и поиска объектов. Сегментация данных компьютерной томографии и электронной микроскопии. Описание реализации программной системы. Примеры результатов сегментации и идентификации объектов.
1857. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЗАНОСА АВТОМОБИЛЯ 1.09 MB
  Анализ подходов к математическому и численному моделированию движения автомобиля. Постановка задачи. Оценка области применимости велосипедной модели. Математические модели движения автомобиля без потери сцепления колес с дорогой. Математическая модель переменной структуры для описания заноса автомобиля.