19961

Общая схема последовательности стадий разработки облучательного устройства

Лекция

Физика

Познакомить слушателей с вопросами разработки и конструирования облучательных устройств для пассивных и активных реакторных испытаний. Обратить внимание на специфику конструкторских разработок облучательных устройств, последовательность проведения этой работы. Выделить наиболее важную задачу для разработки конструкции облучательного устройства- расчет поля температуры по его элементам. Приступить к постановке задачи расчета температурного поля.

Русский

2013-08-13

28.5 KB

3 чел.

Конспект занятия 9.

Цель.

Познакомить слушателей с вопросами разработки и конструирования облучательных устройств для пассивных и активных реакторных испытаний. Обратить внимание на специфику конструкторских разработок облучательных устройств, последовательность проведения   этой работы. Выделить наиболее важную задачу для разработки конструкции облучательного устройства- расчет поля температуры по его элементам. Приступить к постановке задачи расчета температурного поля.

План.

1.  Общая схема последовательности стадий разработки облучательного устройства.

2. Обоснование необходимости тепловых расчетов облучательных устройств.

3. Постановка задачи о распределении температуры в облучательном устройстве.

    Разработка конструкции облучательного устройства сопряжена с необходимостью  учета ряда специфических факторов. Малые радиальные размеры реакторных каналов, внутренние тепловыделения в элементах конструкции устройства и испытуемом образце, влияние облучения на первичные преобразователи измеряемых величин, повышенные требования к надежности - все это требует проведения, иногда весьма сложных расчетов конструкции на стадии проектирования.

     На рис.3.1. представлена общая схема последовательности стадий разработки облучательного устройства. Естественно, что  в ней присутствуют все основные стадии конструкторской   разработки, используемые при создании конструкций в машиностроении,  однако, имеется и специфика.

     Остановимся на специфических особенностях проектирования облучательных устройств. Формулировке   задачи по постановке реакторного эксперимента (I) должно уделяться особое внимание. Должны быть выяснены достаточно веские основания в необходимости постановки реакторного эксперимента и, в частности, вопрос: нет ли каких-либо возможностей обойтись без создания новой конструкции облучательного устройства.

     Естественно, что это, прежде всего, определяется экономикой, но и не только ею, а и временным фактором, т.к. дееспособность облучательного устройства связана с

Рис.3.1..Схема проектирования и расчета облучательных устройств.

1.Техническое

задание

2.Объект  испытаний

3.Место проведения испытаний

(ГЭК, ВЭК, ВКУ ) др.)

5.Схема

тепловых

расчетов

4.Вариант

компоновки

устройства

7. Эскизный проект.

6.Программы  расчетов и проведение вычислений (6-1, 6-2, 6-3, 6-4, 6-5)

()

8.Схема расчетов деформаций и прочности

9.Типы и местоположения датчиков

10.Радиационная обстановка эксперимента

11.Рабочий проект

12.Оценка надежности

Изготовление макета, испытания, коррекция проекта

Программы расчетов: 6-1. Полей температуры, 6-2. Деформаций и прочности, 6-3. Радиационной обстановки, 6-4. Погрешностей, 6-5. Надежности.

флюенсом, набор которого при    отладке   устройства    занимает   значительные    временные интервалы.

    Исчерпывающая информация об объекте испытаний (2) влияет  на выбор места проведения испытаний (3) - это специфическое требование при  проектировании облучательного устройства, так как режимы испытаний во многом определяются свойствами образца и характером его взаимодействия  с излучением.

    Пункты (I, 2,  3) могут служить основой для составления технического задания на проектирование облучательного устройства.

   Важнейшей частью проектных расчетов облучательного  устройства является  оценка температурного  поля по его элементам,  однако, к этой работе можно приступить, имея предварительный  вариант компоновки устройства (4) и конкретную  схему тепловых расчетов (5). Важность этой работы определяется спецификой реакторного  эксперимента, когда излучение приводит к появлению внутренних источников тепла в элементах конструкции,  а их интенсивность зависит и от свойств конструкционных материалов и образца и от местоположения устройства в реакторе.  В то же время большинство последующих расчетов (8,9,10,12), которые могут проводиться   при создании конструкции, во многом зависят   от правильной оценки температурных полей.

3.1. Постановка общей задачи расчета поля температуры в облучательном устройстве

    Расчет поля температуры облучательной установки позволяет на стадии проектирования найти оптимальные размеры нагревателя, учесть температурные деформации элементов установки, произвести прочностной расчет и более правильно наметить места расположения первичных преобразователей для измерения температур, деформаций, нагрузок.

В схематизированном виде установка представляет собой цилиндрическую конструкцию,  симметричную относительно продольной оси и плоскости серединного поперечного сечения активной зоны ядерного реактора   (рис.3.2).

    На оси установки между держателями (2) находится образец (I), вокруг которого установлены нагреватель (3), экран (4) и корпус камеры (5), представляющие  полые соосные цилиндры.

    По длине установка делится на зоны, отличающиеся условиями теплообмена, числом элементов, размерами их поперечных сечений и материалами.

Z=0

Z4

Z3

Z2

Z1

Z5

3-зона

4-зона

5-зона

2-зона

1-зона

1

4

5

3

2

Рис. 3.2. Модель установки для теплового расчета.

   В первых двух зонах нагреватель отдает тепло образцу и экранам, в остальных происходит отвод тепла от держателя через оболочку в окружающую среду.

  Каждый элемент установки может иметь внутренние источники тепла, которые возникают за счет тормозного  гамма -излучения или электронагрева.

    Методика определения полей температуры в установке основывается на следующих допущениях:

1.Расчет производится для установившегося теплового режиму.

2.Температура в поперечном сечении   элементов принята
одинаковой или усредненной по сечению.

3.Теплообмен между соседними элементами происходит в
плоскости поперечного сечения установки.

4.Внутренние источники тепла в пределах каждой зоны

равномерно распределены по всему объему элемента.

    Уравнение теплового баланса любого элемента установки учитывает передачу тепла вдоль оси z   теплопроводностью, наличие внутренних источников тепла, теплообмен с соседними элементами, или с окружающей средой и имеет вид:

λS (d2T/dz2 )+ qvS = q1 +  q2 + q3                                         (1)             

где  

λ - теплопроводность  материала элемента   (Вт./м К ) ;

S - площадь поперечного сечения (м2);

qv  - плотность внутренних источников тепла (Вт/м3 );  

q1 - радиальный поток тепла между смежными элементами  от излучения;

q2  - то же   за счет теплопроводности через газ;

q3 -то же в окружающую среду (для внутренних элементов установки q3= 0).

Потоки тепла можно выразить:

    а) от излучения:

q1 = σ0  пр (T 4T14)

где

σ0 = 5,76* 10-8 Вт/м2К4 - коэффициент излучения абсолютно черного тела;

H- взаимная поверхность излучения смежных элементов,  в данном случае  равная периметру внутреннего элемента;

εпр -приведенный коэффициент черноты;

Т - температура излучающего элемента;

Т1 - температура поглощающего элемента;

    б) за счет теплопроводности через газ, заполняющий установку[11] :

q2 = 2 nk λг (T-T1) / ln(R/R1)

λг -теплопроводность газа в установке (Вт/мK);
R - радиус излучающей поверхности (м);
R1 - радиус поглощающей поверхности (м);
nk = 0,062 ( Рг Gr )1/ 3 104<РгGr < 107 ;

nk = 0,22 ( Рг Gr )1/ 4 107<РгGr < 1010 ;

Pr = ν / a – критерий Прандля;

Gr = TL3/ ν2 – критерий Грасгофа

g - ускорение силы тяжести;

β - коэффициент объемного расширения газа;

ν - коэффициент кинематической вязкости;

а - коэффициент температуропроводности;

T - разность температур теплопередающих поверхностей;

L - высота теплопередающих поверхностей;

         в) за счет теплоотдачи в окружающую среду:

q3 = α F(T-Tcp) (2)

где

α  - коэффициент теплообмена со средой   (Вт/м2 K),

F - наружная поверхность элемента на единицу длины (м);

Tcp - температура среды.

     Потоки тепла излучением и теплопроводностью через газ можно представить в виде:

q2+ q1= h (T-T1)

где

h= (T3+T2T1+TT12+T13) σ0  пр+ 2 nk λг (T-T1) / ln(R/R1)

- приведенный коэффициент теплообмена, а  ε пр определяется соотношением:

ε пр = (1/ε  + (1/ε 1-1) R/R1)-1


 

А также другие работы, которые могут Вас заинтересовать

42199. Калібрування і повірка термометрів опору 286.5 KB
  Засвоїти методику отримання практичних навиків при проведенні досліджень динамічних характеристик термометрів опору при нагріванні і охолодженні повірці термометрів опору та калібруванні напівпровідникових термометрів опору термісторів.2 Програма роботи Під час заняття студент повинен ознайомитись з будовою та принципом дії термометрів опору. Визначити динамічну похибку термометрів опору типу ТСП і ТСМ.
42200. Систематичні похибки вимірювань та методи їх зменшення 71.5 KB
  У процесі заняття провести вимірювання різних електричних величин різними способами і засобами визначити систематичні похибки ввести поправки до результатів вимірювань обчислити дійсні значення вимірюваних величин і впевнитись у правильності отриманих значень.1 Систематичні похибки вимірювань та методи їх зменшення Процес пізнання матеріального світу відбувається через експериментальне визначення вимірювання кількісних оцінок фізичних величин що характеризують досліджувані процеси явища. Таким чином результат...
42201. Вивчення будови, принципу дії та застосування електронного осцилографа для електричних вимірювань 461 KB
  Практичне виконання вимiрювань напруги струму часових iнтервалiв частоти кута зсуву фаз складової комплексного опору та iнших електричних величин з допомогою осцилографа. При пiдготовцi до роботи студенти повиннi самостiйно продумати i завчасно пiдготувати програму виконання роботи для заданого їм варiанта вибрати або скласти самостiйно необхiднi для цього схеми вимiрювань запропонувати свої рiшення в здiйсненнi вимiрювань дiючих значень синусоїдальних струмiв i напруг з допомогою осцилографа. Пропонується продумати методику...
42202. Вивчення методів та засобів вимірювання електричної ємності та індуктивності 245 KB
  Ознайомлення з різними методами вимірювання електричної ємності і індуктивності та приладами що використовуються для цього. Ознайомлення з будовою мостів змінного струму і універсальних мостів з будовою і застосуванням резонансних вимірювачів індуктивності L і ємності С. Отримання навичок практичного виконання вимірювань ємності і індуктивності.
42203. Електронні автоматичні мости і їх повірка 109 KB
  За результатами повірки зробити висновки про придатність до експлуатації автоматичного моста.3 Основні теоретичні відомості Електронні автоматичні мости Як правило термометри опору працюють в комплекті зі зрівноваженими електронними автоматичними мостами постійного або змінного струму або з логометрами. В автоматичних мостах використовується вимірювальна система чотириплечового моста з реохордом що забезпечує високу точність вимірювання. Термометр опору який є чутливим елементом моста включається в одне з його плечей.
42204. МОДЕЛИРОВАНИЕ ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ СИСТЕМ 751 KB
  Ознакомление с пакетом прикладных программ SIMULINK и основными приемами моделирования линейных динамических систем. К занятию допускаются студенты составившие схемы моделирования заданных динамических систем см.1 могут быть составлены схемы моделирования уравнений 1. Для составления схемы моделирования дифференциальных уравнений 1.
42205. КАНОНИЧЕСКИЕ ФОРМЫ ПРЕДСТАВЛЕНИЯ ДИНАМИЧЕСКИХ СИСТЕМ 181.26 KB
  Математическая модель одной и той же линейной динамической системы может быть представлена в различных формах: в форме скалярного дифференциального уравнения -го порядка (модель вход-выход) или в форме системы из дифференциальных уравнений 1-го порядка (модель вход-состояние-выход). Следовательно, между различными формами представления математических моделей существует определенная взаимосвязь, т.е. модель вход-состояние-выход может быть преобразована к модели вход-выход и наоборот.
42206. ПОСТРОЕНИЕ И ИССЛЕДОВАНИЕ МОДЕЛЕЙ ВНЕШНИХ ВОЗДЕЙСТВИЙ 215.45 KB
  Теоретические сведения. В ряде задач анализа и синтеза систем управления требуется построить дифференциальное уравнение по известному частному решению, заданному в виде функции времени. Такая задача возникает, например, при построении динамических моделей внешних воздействий (так называемых, командных генераторов) — сигналов задания и возмущений. Особо отметим, что, в известном смысле, данная задача является обратной по отношению к задаче нахождения решения дифференциального уравнения (см. лабораторную работу № 1)
42207. ТИПОВЫЕ ДИНАМИЧЕСКИЕ ЗВЕНЬЯ 512 KB
  Интегрирующее звено интегратор описывается дифференциальным уравнением: или где коэффициент усиления а его переходная функция . Интегрирующее звено с замедлением описывается дифференциальным уравнением: или где постоянная времени а его переходная функция . Изодромное звено описывается дифференциальным уравнением: или а его переходная функция . Реальное дифференцирующее звено описывается дифференциальным уравнением или а его переходная функция .