19962

Вывод уравнения теплового баланса для любого элемента облучательного устройства

Лекция

Физика

Вывести уравнения теплового баланса для любого элемента облучательного устройства. Обратить внимание слушателей, что после проведения соответствующих алгебраических операций решение задачи о поле температуры сводится к решению системы обыкновенных дифференциальных уравнений с постоянными коэффициентами второго порядка и может быть представлено в гиперболических функциях.

Русский

2013-08-13

24.63 KB

2 чел.

Конспект занятия 10.

Цель.

Вывести уравнения теплового баланса для любого элемента облучательного устройства. Обратить внимание слушателей, что после проведения соответствующих алгебраических операций решение задачи о поле температуры сводится к решению системы обыкновенных дифференциальных уравнений с постоянными коэффициентами второго порядка и может быть представлено в гиперболических функциях. Сформулировать краевые и граничные условия задачи и отметить, что задача может быть решена методом последовательных приближений при начальном задании произвольного температурного распределения. Познакомить слушателей с программой расчета температурного поля на ЭВМ.

План.

1. Вывод уравнения теплового баланса для любого элемента облучательного устройства.

2. Краевые и граничные условия задачи.

3. Программа расчета температурного поля на ЭВМ.

   Для дальнейшего изложения, результат предыдущей лекции можно представить следующим образом:
1.Уравнение теплового баланса любого элемента установки учитывает передачу тепла вдоль оси z   теплопроводностью, наличие внутренних источников тепла, теплообмен с соседними элементами, или с окружающей средой  имеет вид:
 
λS (d2T/dz2 )+ qvS = q1 +  q2 + q3                                                  (1)

 2. q2+ q1= h (T-T1)- потоки тепла через газовый зазор теплопроводностью, излучением и конвекцией.
3. q3 = α F(T-Tcp) – поток тепла во внешнюю среду.

Уравнения теплового баланса для любого элемента установки после подстановки в уравнение (I) значений  q1 , q2 и q3 будут иметь вид:

λ i j S i j (d2Ti j/dz2)+h i (j-1) (Ti j –Ti (j-1))–h i j(Ti j–Ti {j+1})= -b j         (2)

где

i =1,2, ...m - индекс зоны и m- число зон;

j =1,2…n- индекс элемента в зоне и п – число элементов в зоне;

bj -член уравнения, не содержащий переменное значение Т.
    Для крайнего элемента при j=п имеет место теплообмен
c окружающей средой, и последний член левой чаcти уравнения (2)

примет вид:

h i j (Ti j – Ti {j+1}) = αi Fi n (Ti j - Tcp)

Коэффициенты λ, α и h , входящие в уравнение (2), приняты постоянными для средней температуры элемента в зоне.

    После упрощения, уравнения теплового баланса будут представлять систему обыкновенных дифференциальных уравнений с постоянными коэффициентами вида:

d2Ti j/dz2 + a j (j-1) Ti (j-1)  – a j j Ti j  + a i (j+1) Ti (j+1)   = -bi j                (3)

где индекс "i" - номер зоны, находится вверху; коэффициенты
" a " имеют второй индекс, совпадающий с нижним индекcом функции "T", j=1,2 ...n   , а при k<1  (первый индекc при " а ")
и j>n, akj  = 0.

     Общий интеграл системы (З) является суммой общегo
решения соответствующего однородного уравнения и частного решения неоднородного уравнения:

                                                    

T j = βjs (A1s ch |ps|z + A11s sh |ps|) + Dj                                       (4)

 где  ps – корни характерестического уравнения:

||( ps2 - a i j ) δ i j + a i j || = 0                                                                   (5)

в последнем уравнении:

δ i j = 0 при i ≠ j= 1,2,…n

δ i j = 1 при i = j-1;  j;  j+1

a i j =0 при i≤ 1

    Можно  доказать,  что ps2 ≥ 0,  и  поэтому   решение    может

быть    выражено    в     гиперболических    функциях    (4),    где

βjs = ∆1j(ps2)/∆11(ps2)- коэффициенты распределения, равные отношению соответсвующих миноров матрицы (5),а    Dj=|Aj|/|A|- частное решение неоднородного уравнения, равное    отношению определителя |А| , полученного из (5) при ps2 = 0, и определителя |Aj|, полученного из |A| заменой   j -го столбца на столбец свободных членов;

A1s и A11s  постоянные интегрирования, определяемые из граничных условий между зонами:

    

Tji |z(i) = Tji+1|z(i)  ;      λ i j S i j (dTji/dz) |z(i) = λ i+1 j S i+1 j (dTji+1/dz)|z(i)

И краевых условий :

λ m j S m j (dTjm/dz) |z(i) = αj m Fj m (T mj - Tcp)  ;       (dTj1/dz) |z(0) = 0

    Для нахождения поля температуры установки следует составить уравнение теплового баланса для каждого   j -го элемента каждой

i-й зоны, решить систему уравнений (3) для каждой зоны и из граничных условий найти постоянные интегрирования. Величины α, λ и  h  ,  входящие в уравнения,  определяются для средней температуры элемента в зоне, поэтому необходимо до начала расчета задаться произвольным  полем  температуры в  установке.

Так как α, λ и  h   являются непрерывными монотонными функциями температуры, то метод последовательных приближений дает единственное решение.

    Программа расчета поля температуры составлена так, чтобы изменения геометрических размеров установки, материалов ее элементов, характеристики среды, в которой находится установка, мощности нагревателя учитывались только во вводимой информации и не влияли на работу программы. Если в установке нет нагревателя,то мощность   его принимается равной нулю. Программа состоит из основного блока и процедур (рис.3.3.).

    Основной блок содержит ввод параметров установки, задает последовательность выполнения процедур и контролирует допустимую погрешность при получении результата.

    Процедура ТНР предназначена  для определения температуры нагревателя (Тн) в срединной  плоскости установки (z = 0) при заданной температуре смежных элементов: центрального (Т1) и оболочки (Т3) и интенсивности внутренних источников тепла.

    Процедура ТРВ предназначена для определения температуры оболочки Т3 в срединной плоскости при заданной температуре нагревателя.

2.Вычисление плотности внутренних источников тепла.

1.Ввод программы и исходных данных.

3.Определение Тн при заданных Т1 и Т3(процедура ТРН)

4. Определение Т3 при заданных Тн (процедура ТРВ)

 

5.Если (Т3i-1- Т3i)> 5, иначе 6.

6.Определение температуры  на границах зон (процедураBLO1)

7.Если (Т1i-1- Т1i)> 5, иначе 8.

8.Определение полей температуры (процедура BLO2)

9.Стоп

Рис.3.3. Логическая схема программы расчета поля температуры по установке.

    Последовательное применение этих процедур (ТРН и ТРВ) позволяет при заданной температуре нагревателя или оболочки определить температуры   остальных элементов в срединном сечении.

    Процедура BLOI содержит решение системы линейных дифференциальных уравнений, определяет постоянные интегрирования и температуры элементов на границе зон. Погрешность расчетов контролируется разностью температур центрального элемента (Т1) полученной из процедур ТРН и ТРВ  и из процедуры BLOI.


 

А также другие работы, которые могут Вас заинтересовать

3734. Расчет многопластинчатого ротационного компрессора 399 KB
  Исходные данные Холодопроизводительность, Вид компрессора: многопластинчатый ротационный. Построим цикл холодильной машины в диаграмме i - Lg(P). Параметры основных точек сведем в таблицу
3735. Химическая термодинамика. Термохимия, термохимические уравнения. 30.5 KB
  Химическая термодинамика. Термохимия, термохимические уравнения. Экзотермические и эндотермические реакции. Приведите примеры. Химическая термодинамика – это раздел химии, изучающий энергетику химических реакций, а так же факторы и критерии, оп...
3736. Библия как памятник культуры. Структура Ветхого завета 51.5 KB
  Библия по праву считается Книгой Книг. Она неизменно занимает 1-е место в мире по чтимости и читаемости, общим тиражом, частоте издаваемости и переводам на другие языки. О значении ее для верующих христиан вообще говорить не приходится. Библия –...
3737. Фондовая Биржа 93.5 KB
  Введение Главной задачей, поставленной при написании работы стало изучение и освещение ключевых элементов, дающих общий обзор фондового рынка, как целого обособленного организационно-оформленного рынка, как посредника в организации хозяйственных свя...
3738. Суть фінансів, їх функції та роль 65.5 KB
  Виникнення та розвиток фінансів зумовлювалися зростанням продуктивних сил у суспільстві, насамперед товарно-грошових відносин як необхідної форми економічного життя для досягнення певного рівня суспільного добробуту. Своїй досконалості й завер...
3739. Идеализм Платона. Место Платона в истории филисофии 82.5 KB
  Идеализм Платона. Место Платона в истории философии. Платоновская идеалистическая диалектика развивалась в борьбе против материализма Демокрита и гераклитовской диалектики логоса и мира вещей, а также против античной софистики. Как и всякая великая ...
3740. Определение длины электромагнитной волны методом дифракции Фраунгофера 40.5 KB
  Определение длины электромагнитной волны методом дифракции Фраунгофера Цель работы: Исследовать явление дифракции электромагнитной волны. С помощью дифракционной решетки проходящего света измерить длины электромагнитных волн видимого диапазона...
3741. Диагностика новообразований личности подростка 490.5 KB
  Подростковый возраст – трудный период психологического взросления и полового созревания ребёнка. В самосознании происходят значительные изменения: появляется чувство взрослости – возникает страстное желание быть или хотя бы казаться и считаться взрослым.
3742. Учёные-ядерщики В истории советского атомного проекта 70.5 KB
  Ученые-ядерщики в истории советского атомного проекта Введение Обширный массив публикаций по истории создания ядерного оружия в СНГ, особенно мемуаров ветеранов атомного проекта и интервью с ними, появившихся в последние годы, впервые открыл реальну...