19962

Вывод уравнения теплового баланса для любого элемента облучательного устройства

Лекция

Физика

Вывести уравнения теплового баланса для любого элемента облучательного устройства. Обратить внимание слушателей, что после проведения соответствующих алгебраических операций решение задачи о поле температуры сводится к решению системы обыкновенных дифференциальных уравнений с постоянными коэффициентами второго порядка и может быть представлено в гиперболических функциях.

Русский

2013-08-13

24.63 KB

2 чел.

Конспект занятия 10.

Цель.

Вывести уравнения теплового баланса для любого элемента облучательного устройства. Обратить внимание слушателей, что после проведения соответствующих алгебраических операций решение задачи о поле температуры сводится к решению системы обыкновенных дифференциальных уравнений с постоянными коэффициентами второго порядка и может быть представлено в гиперболических функциях. Сформулировать краевые и граничные условия задачи и отметить, что задача может быть решена методом последовательных приближений при начальном задании произвольного температурного распределения. Познакомить слушателей с программой расчета температурного поля на ЭВМ.

План.

1. Вывод уравнения теплового баланса для любого элемента облучательного устройства.

2. Краевые и граничные условия задачи.

3. Программа расчета температурного поля на ЭВМ.

   Для дальнейшего изложения, результат предыдущей лекции можно представить следующим образом:
1.Уравнение теплового баланса любого элемента установки учитывает передачу тепла вдоль оси z   теплопроводностью, наличие внутренних источников тепла, теплообмен с соседними элементами, или с окружающей средой  имеет вид:
 
λS (d2T/dz2 )+ qvS = q1 +  q2 + q3                                                  (1)

 2. q2+ q1= h (T-T1)- потоки тепла через газовый зазор теплопроводностью, излучением и конвекцией.
3. q3 = α F(T-Tcp) – поток тепла во внешнюю среду.

Уравнения теплового баланса для любого элемента установки после подстановки в уравнение (I) значений  q1 , q2 и q3 будут иметь вид:

λ i j S i j (d2Ti j/dz2)+h i (j-1) (Ti j –Ti (j-1))–h i j(Ti j–Ti {j+1})= -b j         (2)

где

i =1,2, ...m - индекс зоны и m- число зон;

j =1,2…n- индекс элемента в зоне и п – число элементов в зоне;

bj -член уравнения, не содержащий переменное значение Т.
    Для крайнего элемента при j=п имеет место теплообмен
c окружающей средой, и последний член левой чаcти уравнения (2)

примет вид:

h i j (Ti j – Ti {j+1}) = αi Fi n (Ti j - Tcp)

Коэффициенты λ, α и h , входящие в уравнение (2), приняты постоянными для средней температуры элемента в зоне.

    После упрощения, уравнения теплового баланса будут представлять систему обыкновенных дифференциальных уравнений с постоянными коэффициентами вида:

d2Ti j/dz2 + a j (j-1) Ti (j-1)  – a j j Ti j  + a i (j+1) Ti (j+1)   = -bi j                (3)

где индекс "i" - номер зоны, находится вверху; коэффициенты
" a " имеют второй индекс, совпадающий с нижним индекcом функции "T", j=1,2 ...n   , а при k<1  (первый индекc при " а ")
и j>n, akj  = 0.

     Общий интеграл системы (З) является суммой общегo
решения соответствующего однородного уравнения и частного решения неоднородного уравнения:

                                                    

T j = βjs (A1s ch |ps|z + A11s sh |ps|) + Dj                                       (4)

 где  ps – корни характерестического уравнения:

||( ps2 - a i j ) δ i j + a i j || = 0                                                                   (5)

в последнем уравнении:

δ i j = 0 при i ≠ j= 1,2,…n

δ i j = 1 при i = j-1;  j;  j+1

a i j =0 при i≤ 1

    Можно  доказать,  что ps2 ≥ 0,  и  поэтому   решение    может

быть    выражено    в     гиперболических    функциях    (4),    где

βjs = ∆1j(ps2)/∆11(ps2)- коэффициенты распределения, равные отношению соответсвующих миноров матрицы (5),а    Dj=|Aj|/|A|- частное решение неоднородного уравнения, равное    отношению определителя |А| , полученного из (5) при ps2 = 0, и определителя |Aj|, полученного из |A| заменой   j -го столбца на столбец свободных членов;

A1s и A11s  постоянные интегрирования, определяемые из граничных условий между зонами:

    

Tji |z(i) = Tji+1|z(i)  ;      λ i j S i j (dTji/dz) |z(i) = λ i+1 j S i+1 j (dTji+1/dz)|z(i)

И краевых условий :

λ m j S m j (dTjm/dz) |z(i) = αj m Fj m (T mj - Tcp)  ;       (dTj1/dz) |z(0) = 0

    Для нахождения поля температуры установки следует составить уравнение теплового баланса для каждого   j -го элемента каждой

i-й зоны, решить систему уравнений (3) для каждой зоны и из граничных условий найти постоянные интегрирования. Величины α, λ и  h  ,  входящие в уравнения,  определяются для средней температуры элемента в зоне, поэтому необходимо до начала расчета задаться произвольным  полем  температуры в  установке.

Так как α, λ и  h   являются непрерывными монотонными функциями температуры, то метод последовательных приближений дает единственное решение.

    Программа расчета поля температуры составлена так, чтобы изменения геометрических размеров установки, материалов ее элементов, характеристики среды, в которой находится установка, мощности нагревателя учитывались только во вводимой информации и не влияли на работу программы. Если в установке нет нагревателя,то мощность   его принимается равной нулю. Программа состоит из основного блока и процедур (рис.3.3.).

    Основной блок содержит ввод параметров установки, задает последовательность выполнения процедур и контролирует допустимую погрешность при получении результата.

    Процедура ТНР предназначена  для определения температуры нагревателя (Тн) в срединной  плоскости установки (z = 0) при заданной температуре смежных элементов: центрального (Т1) и оболочки (Т3) и интенсивности внутренних источников тепла.

    Процедура ТРВ предназначена для определения температуры оболочки Т3 в срединной плоскости при заданной температуре нагревателя.

2.Вычисление плотности внутренних источников тепла.

1.Ввод программы и исходных данных.

3.Определение Тн при заданных Т1 и Т3(процедура ТРН)

4. Определение Т3 при заданных Тн (процедура ТРВ)

 

5.Если (Т3i-1- Т3i)> 5, иначе 6.

6.Определение температуры  на границах зон (процедураBLO1)

7.Если (Т1i-1- Т1i)> 5, иначе 8.

8.Определение полей температуры (процедура BLO2)

9.Стоп

Рис.3.3. Логическая схема программы расчета поля температуры по установке.

    Последовательное применение этих процедур (ТРН и ТРВ) позволяет при заданной температуре нагревателя или оболочки определить температуры   остальных элементов в срединном сечении.

    Процедура BLOI содержит решение системы линейных дифференциальных уравнений, определяет постоянные интегрирования и температуры элементов на границе зон. Погрешность расчетов контролируется разностью температур центрального элемента (Т1) полученной из процедур ТРН и ТРВ  и из процедуры BLOI.


 

А также другие работы, которые могут Вас заинтересовать

53842. Анализ финансово-хозяйственной деятельности предприятия, классификация задач анализа 28.5 KB
  Анализ финансово-хозяйственную деятельность предприятия входит в число основных направлений деятельности финансового менеджера. Он формирует объективную основу успешного управления финансами организации.
53843. Коти – пухнасті улюбленці людей. Історія одомашнювання кішки. Породи котів 150.5 KB
  Історія одомашнювання кішки. Кішки Діти а у кого дома є кішечка або котик Розповіді дітей про своїх улюбленців. Історичні відомості з одомашнювання кішки розповідь учителя. Діти а чи знаєте ви що протягом багатьох століть кішки вважалися тваринами загадковими таємничими повязаними з надприродними силами.
53844. Сценарій виховного заходу за темою: «Наша мрія крилата – стати справжніми козачатами» 72 KB
  Не сумуйте гори й ріки Не журиться мами: Коли виростем великі Будем козаками Приспів: Гей хто любить Наш козацький край З нами разом Козаком ставай Хлопець: Мамо моя За час за годину Свиснуть кулі заграють гармати. Звучить пісня Гей на горі та й женці жнуть. Для присяги звучить пісня Гей там на горі Січ іде: Гей там на горі Січ іде. Гей малиновий стяг несе.
53845. КОЗАЦЬКОМУ РОДУ – НЕМА ПЕРЕВОДУ 67 KB
  Карта козаків Козацька вікторина. Але підростають достойні нащадки козаків. А чи ж були у козаків скрині Дійсно кожному відомо що у козаків насамперед був кінь стрімкий шабля гостра шаровари червоного кольору А що ще ви знаєте про козаків Давайте но пригадаємо історію Сьогодні ми станемо свідками Козацьких розваг між двома курінями козаків і козачок. Отже зустрічаємо наших сильних вихованих розумних чесних козаків та приголомшливо прекрасних чарівних спокусливих козачок Знайомство команд.
53846. Доба героїчних походів козаків. Петро Конашевич-Сагайдачний 116.5 KB
  Доба героїчних походів козаків. Мета: розглянути напрями морських походів козаків; охарактеризувати діяльність гетьмана П. Актуалізація опорних знань учнів: фронтальна бесіда: Про кого ми вивчаємо у 8класі про козаків; Хто такі козаки Які причини виникнення козацтва З ким воювали козаки поляками турками ІІІ. План Доба героїчних походів козаків.
53847. Козацькому роду нема переводу (конкурс-змагання 2-х команд) 3-і класи 47.5 KB
  Складемо Присягу юних козачат Бути чесним і сміливим Присягаємось Боронити справедливість Присягаємось Цінувати побратимство Присягаємось Шанувати всі народи Присягаємось І плекати рідну мову Присягаємось Щоб козацькому роду не було переводу. Присягаємось на вірність Вітчизні й народу. Присягаємось Присягаємось Присягаємось Журі підводить підсумки.
53848. Сценарій спортивного свята «Козацькому роду нема переводу» 29 KB
  Зал святково прикрашений вишитим рушником короваєм із калиною та барвінкомконкурсними газетами. Ведуча Оголошується перший конкурс: Переправа. Гетьман 2 Конкурс: Гиря. 3 конкурс Інтелектуальний.
53849. Козацька Україна і наш край 360.5 KB
  Мета: повторити і закріпити матеріал теми; ознайомити із подіями що відбувалися на території нашого краю в період козаччини; поглибити знання учнів; розвивати їх память творчу уяву; формувати інтерес до історії; виховувати повагу до славного минулого нашого народу і його захисників любов до рідного краю; підготуватись до тестування з даної теми. В програмі для 5 класу зібрані початкові відомості з найважливіших тем історії України від найдавніших часів до нашого часу. Однією з цих тем є тема нашого уроку що включає такі важливі питання...
53850. Інтелектуальна гра «Козацькими стежками» 42.5 KB
  Дозволяємо і призначаємо організовувати реєстрове військо в числі 20 тис. чоловік.Це військо гетьман і старшина повинні набрати і записати в реєстр,і вони мусять перебувати в маєтках, що містяться у воєводстві Київському,не маючи нічого до воєводств Брацлавського і Чернігівського. А маєтки шляхетські мусять лишатися вільними, і в них реєстрові козаки ніде не повинні лишатись