19962

Вывод уравнения теплового баланса для любого элемента облучательного устройства

Лекция

Физика

Вывести уравнения теплового баланса для любого элемента облучательного устройства. Обратить внимание слушателей, что после проведения соответствующих алгебраических операций решение задачи о поле температуры сводится к решению системы обыкновенных дифференциальных уравнений с постоянными коэффициентами второго порядка и может быть представлено в гиперболических функциях.

Русский

2013-08-13

24.63 KB

2 чел.

Конспект занятия 10.

Цель.

Вывести уравнения теплового баланса для любого элемента облучательного устройства. Обратить внимание слушателей, что после проведения соответствующих алгебраических операций решение задачи о поле температуры сводится к решению системы обыкновенных дифференциальных уравнений с постоянными коэффициентами второго порядка и может быть представлено в гиперболических функциях. Сформулировать краевые и граничные условия задачи и отметить, что задача может быть решена методом последовательных приближений при начальном задании произвольного температурного распределения. Познакомить слушателей с программой расчета температурного поля на ЭВМ.

План.

1. Вывод уравнения теплового баланса для любого элемента облучательного устройства.

2. Краевые и граничные условия задачи.

3. Программа расчета температурного поля на ЭВМ.

   Для дальнейшего изложения, результат предыдущей лекции можно представить следующим образом:
1.Уравнение теплового баланса любого элемента установки учитывает передачу тепла вдоль оси z   теплопроводностью, наличие внутренних источников тепла, теплообмен с соседними элементами, или с окружающей средой  имеет вид:
 
λS (d2T/dz2 )+ qvS = q1 +  q2 + q3                                                  (1)

 2. q2+ q1= h (T-T1)- потоки тепла через газовый зазор теплопроводностью, излучением и конвекцией.
3. q3 = α F(T-Tcp) – поток тепла во внешнюю среду.

Уравнения теплового баланса для любого элемента установки после подстановки в уравнение (I) значений  q1 , q2 и q3 будут иметь вид:

λ i j S i j (d2Ti j/dz2)+h i (j-1) (Ti j –Ti (j-1))–h i j(Ti j–Ti {j+1})= -b j         (2)

где

i =1,2, ...m - индекс зоны и m- число зон;

j =1,2…n- индекс элемента в зоне и п – число элементов в зоне;

bj -член уравнения, не содержащий переменное значение Т.
    Для крайнего элемента при j=п имеет место теплообмен
c окружающей средой, и последний член левой чаcти уравнения (2)

примет вид:

h i j (Ti j – Ti {j+1}) = αi Fi n (Ti j - Tcp)

Коэффициенты λ, α и h , входящие в уравнение (2), приняты постоянными для средней температуры элемента в зоне.

    После упрощения, уравнения теплового баланса будут представлять систему обыкновенных дифференциальных уравнений с постоянными коэффициентами вида:

d2Ti j/dz2 + a j (j-1) Ti (j-1)  – a j j Ti j  + a i (j+1) Ti (j+1)   = -bi j                (3)

где индекс "i" - номер зоны, находится вверху; коэффициенты
" a " имеют второй индекс, совпадающий с нижним индекcом функции "T", j=1,2 ...n   , а при k<1  (первый индекc при " а ")
и j>n, akj  = 0.

     Общий интеграл системы (З) является суммой общегo
решения соответствующего однородного уравнения и частного решения неоднородного уравнения:

                                                    

T j = βjs (A1s ch |ps|z + A11s sh |ps|) + Dj                                       (4)

 где  ps – корни характерестического уравнения:

||( ps2 - a i j ) δ i j + a i j || = 0                                                                   (5)

в последнем уравнении:

δ i j = 0 при i ≠ j= 1,2,…n

δ i j = 1 при i = j-1;  j;  j+1

a i j =0 при i≤ 1

    Можно  доказать,  что ps2 ≥ 0,  и  поэтому   решение    может

быть    выражено    в     гиперболических    функциях    (4),    где

βjs = ∆1j(ps2)/∆11(ps2)- коэффициенты распределения, равные отношению соответсвующих миноров матрицы (5),а    Dj=|Aj|/|A|- частное решение неоднородного уравнения, равное    отношению определителя |А| , полученного из (5) при ps2 = 0, и определителя |Aj|, полученного из |A| заменой   j -го столбца на столбец свободных членов;

A1s и A11s  постоянные интегрирования, определяемые из граничных условий между зонами:

    

Tji |z(i) = Tji+1|z(i)  ;      λ i j S i j (dTji/dz) |z(i) = λ i+1 j S i+1 j (dTji+1/dz)|z(i)

И краевых условий :

λ m j S m j (dTjm/dz) |z(i) = αj m Fj m (T mj - Tcp)  ;       (dTj1/dz) |z(0) = 0

    Для нахождения поля температуры установки следует составить уравнение теплового баланса для каждого   j -го элемента каждой

i-й зоны, решить систему уравнений (3) для каждой зоны и из граничных условий найти постоянные интегрирования. Величины α, λ и  h  ,  входящие в уравнения,  определяются для средней температуры элемента в зоне, поэтому необходимо до начала расчета задаться произвольным  полем  температуры в  установке.

Так как α, λ и  h   являются непрерывными монотонными функциями температуры, то метод последовательных приближений дает единственное решение.

    Программа расчета поля температуры составлена так, чтобы изменения геометрических размеров установки, материалов ее элементов, характеристики среды, в которой находится установка, мощности нагревателя учитывались только во вводимой информации и не влияли на работу программы. Если в установке нет нагревателя,то мощность   его принимается равной нулю. Программа состоит из основного блока и процедур (рис.3.3.).

    Основной блок содержит ввод параметров установки, задает последовательность выполнения процедур и контролирует допустимую погрешность при получении результата.

    Процедура ТНР предназначена  для определения температуры нагревателя (Тн) в срединной  плоскости установки (z = 0) при заданной температуре смежных элементов: центрального (Т1) и оболочки (Т3) и интенсивности внутренних источников тепла.

    Процедура ТРВ предназначена для определения температуры оболочки Т3 в срединной плоскости при заданной температуре нагревателя.

2.Вычисление плотности внутренних источников тепла.

1.Ввод программы и исходных данных.

3.Определение Тн при заданных Т1 и Т3(процедура ТРН)

4. Определение Т3 при заданных Тн (процедура ТРВ)

 

5.Если (Т3i-1- Т3i)> 5, иначе 6.

6.Определение температуры  на границах зон (процедураBLO1)

7.Если (Т1i-1- Т1i)> 5, иначе 8.

8.Определение полей температуры (процедура BLO2)

9.Стоп

Рис.3.3. Логическая схема программы расчета поля температуры по установке.

    Последовательное применение этих процедур (ТРН и ТРВ) позволяет при заданной температуре нагревателя или оболочки определить температуры   остальных элементов в срединном сечении.

    Процедура BLOI содержит решение системы линейных дифференциальных уравнений, определяет постоянные интегрирования и температуры элементов на границе зон. Погрешность расчетов контролируется разностью температур центрального элемента (Т1) полученной из процедур ТРН и ТРВ  и из процедуры BLOI.


 

А также другие работы, которые могут Вас заинтересовать

14203. КОНСПЕКТЫ ЛЕКЦИЙ ПО БЕЛОРУССКОЙ МУЗЫКЕ 69.22 KB
  КОНСПЕКТЫ ЛЕКЦИЙ ПО БЕЛОРУССКОЙ МУЗЫКЕ БЕЛОРУССКАЯ МУЗЫКА XVIII ВЕКА В XVIII веке Беларусь входила в состав Речи Посполитой. В конце века Речь Посполитая была разделена тремя государствами и перестала существовать как самостоятельная политическая единица. Белору...
14204. Белорусская народная музыка 219.5 KB
  Белорусская народная музыка Музыкальный фольклор уникальная самобытная культура наших предков осознается современным обществом как значительный фактор духовности преемственности поколений приобщения к национальным жизненным истокам. Зарод
14205. Владислав Голубок 18.51 KB
  История белорусского театра первых двух десятилетий XX века богата на многочисленные знаменательные события уникальные явления к которым можно отнести и многолетнюю деятельность Владислава Голубка. Он сочетал в себе талант писателя и драматурга актера и режиссера худ...
14206. Иосиф Жинович: цимбалист-виртуоз, композитор и дирижер 25.3 KB
  Иосиф Жинович: цимбалиствиртуоз композитор и дирижер досье белта Современную белорусскую музыкальную культуру сложно представить без цимбал которые воспринимаются в определенной степени как музыкальный символ Беларуси. Главная заслуга в этом принадлежит перв
14207. Фортепианное искусство Беларуси XX века 92.5 KB
  Фортепианное искусство Беларуси XX века Фортепианная музыка является неотъемлемой частью профессионального искусства Беларуси. Формирование белорусской национальной композиторской школы завершилось к концу XIX столетия и фортепианное искусство как композиторское...
14208. ИСТОРИЯ БЕЛОРУССКОЙ МУЗЫКАЛЬНОЙ КУЛЬТУРЫ ДО XX ВЕКА 553.5 KB
  Е.С. Бондаренко ИСТОРИЯ БЕЛОРУССКОЙ МУЗЫКАЛЬНОЙ КУЛЬТУРЫ ДО XX ВЕКА Учебно-методическое пособие Минск 2007 ВВЕДЕНИЕ Курс истории белорусской музыки музыки нашей страны занимает одно из важнейших мест в ряду музыкальнои...
14209. История белорусской музыки ХХ века 3.37 MB
  Л.А. Волкова История белорусской музыки ХХ века Симфония В пособии освещены актуальные проблемы исторической эволюции национального симфонизма и собственно симфонии жанра занимающего центральное место в белорусской музыке ХХ века. Особое внимание уде...
14210. Музична память (англ. music memory) 155 KB
  Музична память. Музична память англ. music memory здатність впізнавати і відтворювати музичний матеріал. Музичне впізнавання необхідно для осмисленого сприйняття музики. Необхідна умова музичної памяті достатній розвиток музичного слуху. Важливе місце в музичній
14211. Музична педагогіка 281 KB
  Тема 1. Сутність музичної педагогіки та її основні категорії Музичне виховання як важлива складова естетичного виховання відіграє особливу роль у всебічному розвитку особистості дитини. Ця роль визначається специфікою музики як виду мистецтва з одного боку та специф...