19963

Схема тепловых расчетов для конкретной экспериментальной установки

Лекция

Физика

Рассмотреть конкретный пример использования методики расчета температурного поля облучательного устройства. В качестве примера предлагается облучательное устройство Ритм, предназначенное для комплексного исследования пластических свойств ядерного топлива и газовыделения при одновременной регистрации акустической эмиссии в процессе облучения.

Русский

2013-08-13

29.19 KB

1 чел.

Конспект занятия 11.

Цель.

   Рассмотреть конкретный пример использования методики расчета температурного поля облучательного устройства.   В качестве примера предлагается  облучательное устройство "Ритм", предназначенное для комплексного исследования пластических   свойств   ядерного  топлива  и  газовыделения  при одновременной регистрации акустической эмиссии в процессе облучения. Обосновать выбор схемы для тепловых расчетов, выбор конструкционных материалов, теплофизических параметров и источников тепловыделений. Познакомить слушателей с результатами расчетов и их сопоставлением  с экспериментальными данными.

План.

1. Схема тепловых расчетов для конкретной экспериментальной установки.

2.Выбор теплофизических характеристик для проведения расчетов.

3. Сопоставление экспериментальных данных с результатами расчета.

  В качестве примера рассматривается облучательное устройство "Ритм", предназначенное для комплексного исследования пластических   свойств   ядерного  топлива  и  газовыделения  при одновременной регистрации акустической эмиссии в процессе облучения.  

  Схематическое изображение экспериментальной установки для проведения тепловых расчетов показано на рис.3.4.

   Для практических расчетов поля температуры в установках необходимо задаться зависимостями теплофизических характеристик материалов от температуры, величинами тепловыделений в элементах установки и коэффициентами теплообмена. Кроме того необходимо задать геометрические характеристики облучательного устройства.

    

    Конструкционными материалами облучательных устройств обычно являются: алюминиевые сплавы, нержавеющая сталь молибден и вольфрам. Исследования могут проводиться на образцах из урана, его соединений и сплавов с различным обогащением по урану-235.

Рис.3.4.Модель для расчета аксиального поля температуры.

5

Z1

Z2

Z3

Z4

Z=0

R0

R1

RН

R2

R3

Rоб JjОБ

R4

1

2

3

4

6

    В соответствии с рекомендациями [12] зависимость теплопроводности от температуры молибдена может быть аппроксимирована двумя прямыми:

λ = 144-0,0378 (Т-273) (Вт/м K)  при Т < 2120 К   

λ=  74-0,0092 (T-2I20) (Вт/м K)   при Т > 2120 К   

Теплопроводность нержавеющей стали [13] может быть описана параболической зависимостью от температуры:   

λ = 33,2 - 11,2*I0-6 (730 + Т)*(1273 - Т) (Вт/м K).

Теплопроводность алюминия в [ 13] аппроксимирована формулой:

λ = 210 (1,2)(T-350)/345 (Вт/м K)

    Зависимость теплопроводности вольфрама   от температуры [12] можно представить полиномом второй степени:

λ= 0,971*10-5 Т2 + 0,0548 T + 168,6.

    Теплопроводность гелия, которым заполняется испытательная камера, как функция температуры, в соответствии с рекомендацией [14] описывается: соотношением:

λ = λ0*(Т/273)0.73

где λ0 - теплопроводность гелия при Т = 273 К.

    Степень черноты по данным [15 ] и [11] в зависимости от температуры апроксимируется следующими уравнениями:

для молибдена - ε = I,024*I0-4 T,

для вольфрама - ε = I,389*I0-4 T,

для нержавеющей стали в диапазоне температуры 400-1200 К

                            ε = 0,0814(Т)0.3,

для алюминия в пределах 293-323 К  ε  может быть принята постоянной, равной 0,1.

     Коэффициент теплообмена с окружающей средой α определяется по рекомендациям [11] . Его величина для воздуха меняется слабо и может быть принята постоянной, равной 7 Вт/м 2  К .

При охлаждении стенки камеры водой  в отсутствии кипения в пристенном слое α   рекомендуется [11] выбирать в пределах ; 600-1800 Вт/м 2 К. В условиях бассейнового реактора ИРТ-МИФИ при температуре воды 318 К и возможной разности температур между стенкой и водой ~ 45 К можно принять   α = 880 Вт/м2 К.

   

    Тепловыделение в  топлива в соответствии с рекомендациями

[ 9 ] определяется выражением:

qv = 0.3*10-10 N (m 5 σ 5 Ф Т / A 5 + m 8 σ 8 Ф Б / A 8 ) + ρ q γ 

где

N - число Авогадро;

σ 5 и σ 8 - сечения деления изотопов U235 и U238

Ф ТБ - потоки тепловых и быстрых нейтроновА5 и А8 - массовые числа изотопов U235 и U238 

q γ-удельное энерговыделение при поглощении гамма-квантов Вт/г   
ρ - плотность образца.

    Расчет удельного энерговыделения в конструкционных материалах за счет поглощения γ-излучения проводится на основании известной зависимости поглощенной мощности дозы p (рад/с) от мощности реактора.

В этом случае для средней энергии    γ -квантов, равной I МэВ:

q γ = 3,57*10 -4 p γj (μ/ρ )j ,

где γj и (μ/ρ )j - плотность материала и  массовый коэффициент поглощения   j -го элемента конструкции соответственно [16] .

     

    Изложенная выше общая методика теплового расчета высокотемпературных реакторных устройств была использована  при проектировании конкретных облучательных установок. Вне и в поле излучений были проведены эксперименты по исследованию температурных распределений в облучательных устройствах.

     На рис.3.5,3.6 представлены сопоставления расчетных полей температуры с экспериментальными результатами. Представленная общая методика расчета, как видно из приведенного примера, конкретно реализуется в случае задания геометрических размеров системы.

    Таким образом, это типичный пример "поверочного" расчета конструкции. Такой подход к решению задачи оправдан и при наличии ЭВМ экономически целесообразен, т.к.  предполагает неоднократное обращение к программе расчетов на стадии проектирования облучательного устройства.

    При повторных обращениях возможны уточнения геометрических размеров системы, использование других материалов в конструкции. В этом случае необходимы изменения только в блоках программы, и все повторные (вариантные) расчеты не являются трудоемкими.

    Необходимо отметить и еще один аспект использования методики. Поставленная задача стационарна, однако с помощью нее возможно рассмотрение и нестационарных  задач.

    Для реализации таких расчетов необходимо использование программы с изменением параметров (температура, внутренние источники тепла и др.) "шагами", зависящими от времени таким образом, что рассматриваемая система будет проходить последовательно множество стационарных состояний, отвечающих за ее поведение во времени.

Рис.3.5. Зависимость температуры образца (1- эксперимент, 2- расчет) и температуры фланца (4- эксперимент, 3- расчет) от мощности нагревателя при мощности реактора 2,5 МВт.

Т К

1200

900

600

0                                       200                                     400   Р, Вт

1

2

3

4

Т К

1800

1200

600

            0                        40                        80      Z мм

            

Эксперимент

2

3

1

Рис.3.6. Осевое распределение температуры по элементам установки «Ритм». (1, 2, 3 – расчет при температурах нагревателя 2400К, 1500К,990К.) соответственно).


 

А также другие работы, которые могут Вас заинтересовать

37648. Генератор пилообразного напряжения 277.5 KB
  Цель работы: ознакомление с принципом действия генераторов пилообразных напряжений (ГПН). Оборудование: лабораторный стенд Е91А 2636, осциллограф С1 – 143, генератор сигналов – низкочастотный Г3 – 120.
37649. МІЖНАРОДНО-ПРАВОВА ОХОРОНА СЕРЕДОВИЩА СВІТОВОГО ОКЕАНУ, ТВАРИННОГО ТА РОСЛИННОГО СВІТУ 709.5 KB
  Мета курсової роботи залежить від пошуку ефективних шляхів, вкладених у гарантоване забезпечення сприятливого середовища Світового океану, тваринного та рослинного світу, екологічну безпеку із застосуванням міжнародно-правових екологічних принципів, і норм.
37650. Транзисторный ключ с нагрузкой индуктивного характера 326.5 KB
  Цель работы: ознакомление с особенностями переходных процессов в схемах транзисторных ключей с нагрузкой индуктивного характера. Оборудование: лабораторный стенд Е91А 2636, осциллограф С1 – 143, генератор сигналов – низкочастотный Г3 – 120.
37651. Усилитель высокой частоты УВЧ 998 KB
  Цель работы: определить неисправность в усилителе высокой частоты УВЧ. Оборудование: осциллограф С1 – 101, тренажер Т – 97, вольтметр В7 – 20.
37652. Блокинг – генератор 247.5 KB
  Для запуска блокинг – генератора в цепь эмиттера подается положительный импульс напряжения. Под действием этого импульса в цепи эмиттера возникает ток открывающий транзистор и вызывающий появление тока в цепи коллектора. Потенциал коллектора повышается, а на обмотке трансформатора, включенной в его цепь, появляется напряжение
37653. Усилитель импульсного напряжения УИН 839.5 KB
  Цель работы: определить неисправность в усилителе импульсного напряжения УИН. Оборудование: осциллограф С1 – 101, тренажер Т – 97, вольтметр В7 – 20.
37654. Усилитель постоянного тока УПТ 910 KB
  Цель работы: определить неисправность в усилителе постоянного тока УПТ. Оборудование: осциллограф С1 – 101, тренажер Т – 97, вольтметр В7 – 20.
37655. Генератор низкой частоты ГНЧ 807 KB
  Цель работы: определить неисправность в генераторе низкой частоты ГНЧ. Оборудование: осциллограф С1 – 101, тренажер Т – 97, вольтметр В7 – 20.
37656. Генератор высокой частоты ГВЧ 1.11 MB
  Цель работы: определить неисправность в генераторе высокой частоты ГВЧ. Оборудование: осциллограф С1 – 101, тренажер Т – 97, вольтметр В7 – 20.