19964

Пастановка задачи о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы

Лекция

Физика

Поставить и решить задачу о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обратить внимание на то, что для этого случая можно получить аналитическое решение, пригодное для оценочных расчетов радиального поля температуры по элементам облучательного устройства, тепловой изоляции или определения местоположения и мощности нагревателя для создания нужного температурного режима на облучаемом образце.

Русский

2013-08-13

31.07 KB

1 чел.

Конспект занятия 12.

Цель.

    Поставить и решить задачу о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обратить внимание на то, что для этого случая можно получить аналитическое решение, пригодное  для  оценочных расчетов  радиального поля температуры по элементам облучательного устройства, тепловой изоляции или определения местоположения и мощности нагревателя для создания нужного температурного режима на облучаемом образце.

    

План.

1. Пастановка задачи о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы.      

2. Постановка и решение вспомогательных задач.

    Рассмотренная в предыдущем разделе задача реализуется   с помощью ЭВМ, дает пространственное распределение поля температуры для осесимметричной геометрии облучательного устройства, однако, неоправданно сложна, если ставится задача оценки тепловой изоляции или размещения нагревателя для создания нужного температурного режима на облучаемом образце.

    Рассмотрим задачу о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы.      

    Геометрические условия (рис.3.7) задают образец цилиндрической формы радиусом R1,окруженный концентричными экранами с радиусами R k ,  R k+1  . Последний экран R n является обечайкой установки или стенкой канала. Экраны и образец по длине настолько велики, что влиянием теплоотвода в торцы можно пренебречь.

    Физические условия рассматривают   образец, экраны и обечайку установки с теплопроводностью  λ = const   при расчете поля температуры внутри элемента, но  λ =f (Т) при рассмотрении задачи в целом.

   В образце, экранах и обечайке (стенке канала) действуют внутренние источники тепла  q V,k,k +1 (Bт/см3).

Рис.3.7 Модель расчета поля температуры при отсутствии утечек тепла в торцы.

λk.k+1

Rk

Rn

3

1

2

K

K+1

K+2

K+3

n-1

n

qv01v01

qv23

λ23

qvk.k+1

Q

α.Tcp

T=T(r)

Qk

λk,k+1

qvk,k+1

Rk

Tk

Tk+1

А

dT/dr|r=0=0

T=T(r)

λ01

qv01

R1

T1

Б

    Любой из экранов может быть нагревателем, и тогда его источники тепла можно выразить:

q V k,k+1= q V k,k+1,р + q V k,k+1, э

q V k,k+1,р -  внутренние источники тепла при действии радиации;

q V k,k+1,э  = j2 R -  внутренние источники тепла при действии

электрического тока,

где

j -плотность электрического тока (А/см2 ),  

ρ - удельное электросопротивление (Ом. cм).

    Пространство между экранами может быть:

- заполнено газом  с коэффициентом теплопроводности λк-1,к , который постоянен  при рассмотрении теплопередачи между  экранами и зависит от температуры при рассмотрении общей задачи.

-  вакуумировано.

    Заданы:

- интегральные степени черноты экранов.

- температура окружающей среда Tс и α.

    Источники тепла между экранами отсутствуют q V k-1,k= 0.

    Процесс передачи тепла осуществляется:  

-  между экранами: излучением, теплопроводностью и конвекцией;

-   в экранах - теплопроводностью;

- с внешней поверхности обечайки с коэффициентом

теплоотдачи α.

    Временные условия задают установившийся режим:

dT/dτ =0

   Граничные условия:

    I) краевые:

а) теплоотдача с внешней поверхности:

 

Qn = 2πα Rnn - Тc)                                                                         (6)

где   

Qn  - погонный тепловой поток с внешней поверхности обечайки (стенки канала);  

Тn   - температура обечайки;   

Тс - температура внешней среды;

б) поле температуры симметрично относительно образца:

dT/dr | r=0 =0                                                                                       (7)

         2) поток тепла между экранами:

Qk-1,k =  2π[ εk-1,k σ0 Rk-13k-1 + Т 2k-1Т k k-1 Т 2k 3k) +

+nк λк-1,к /ln (Rk/ Rk-1)](Тk-1-Tk) = hk-1,kk-1-Tk)                             (8)

где

εk-1,k= [1/ εk-1 + (1/εk-1-1)( Rk-1/ Rk)]-1 

- приведенный коэффициент интегральной степени черноты.

Более подробно последние соотношения    рассматривается в разделе 3.1;

         3) поток тепла между газом и твердой стенкой определяется соотношением:

Qk = - 2π λk-1,k  Rk-1 dT/dr | r= R(k-1)                                                    (9)

Qk-1 = Qk-1,k = Qk ,                                                                              (10)

так как источники тепла между экранами отсутствуют.

    Ход  решения задачи сводится к следующему:

1.Геометрия задачи и известное распределение внутренних источников тепла позволяют определить потоки тепла Qk  для

каждого значения   rк  в том числе и для rn – Qn ;

2.  По значению  Qn можно определить  температуру  поверхности  обечайки и далее температуру поверхности Тn-1 , решив задачу теплопроводности;

3. Зная условия теплообмена между экранами и поток Qn , можно найти   Тn-2 , а из решения задачи теплопроводности определить  

Тn-3  и т.д.;

4. Следует,  однако, помнить, что полученные значения Ti будут первыми  приближениями, так  как  условия  теплообмена между экранами зависят от Ti  и поэтому точное решение получают методом последовательных   приближений.

     Для решения задачи предварительно необходимо рассмотреть поле  температуры  в экране  и  образце.

     Поле температуры в экране ( рис.3.7 )

     На поверхность цилиндрической стенки действует погонный поток  тепла,  стенка  имеет  постоянный  коэффициент  теплопроводности  λк, к+1 , в ней действуют внутренние источники тепла qv,k,k+1 и задана температура поверхности Tк+1.

     Требуется определить поток тепла  Qк+1  , поле температуры на стенке, температуру и  разность температур (Tк -Tк+1)

Задача стационарная, граничные условия:

Qk = - 2π λk,k+1  Rk (dT/dr | r= Rk )                                              (11) ,

T| r=Rk+1 = Тk+1                                                                            (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

Поле температуры описывается уравнением:

d2T/dr2 + (1/r) ( dT/dr) + qv,k,k+1/ λк, к+1 = 0                             (13)

Решение  уравнения  имеет  вид:

T= - (r2 /4) qv,k,k+1/ λк, к+1 +C1ln r +C2                                      (14)

Используем граничные условия для определения постоянных.

Решение можно представить в следующем виде:

Т = Тk+1 + qv,k,k+1/2 λк, к+1[(R2k+1 r2)/2 – R2kln(Rk+1/r) ] +

(Qk/2 πλк, к+1) ln(Rk+1/r)                                                            (15)

Тk - Тk+1 = (qv,k,k+1/2 λк, к+1)[(R2k+1 R2k)/2 – R2kln(Rk+1/ Rk) ] +

(Qk/2 πλк, к+1) ln(Rk+1/ Rk)                                                          (16)

Qk+1 = - 2π λk,k+1  Rk+1 dT/dr | r= Rk+1= πqv,k,k+1(R2k+1 R2k) + Qk   (17)

Тk - Тk+1 = Av,k,k+1+ Ak,k+1                                                          (18)

    Поле температуры в образце ( рис.3.7.)

    На поверхности цилиндра с коэффициентом теплопроводности λ0,1   задана температура Т1   , внутри цилиндра действуют внутренние источники тепла qv01 , в центре цилиндра температура имеет экстремум.

Граничные условия:

 dT/dr | r= 0                                                                                     (19)

T | r= R1= Т1                                                                                    (20)

    Поле температуры описывается уравнением (13) и (14).

Из (19)  C1 = 0, тогда  из (20) определяем:

С2 = Т1+ qv,0,1 R21/4 λ0,1

Поле температуры в цилиндре (образце) имеет вид:

Т=Т1+ qv,0,1 (R21-r2)/4 λк, к+1

Поток тепла с поверхности цилиндра:

Qk = - 2π λ0,1  R1 dT/dr | r= R1 = πqv,0,1R21 = πqv,0,1(R21 R20),

где R0 = 0

Определяем потоки тепла, пользуясь результатами задач, рассмотренных выше.


 

А также другие работы, которые могут Вас заинтересовать

36185. Конструкции и материалы самонесущих и навесных наружных стен. Их особенности 16.22 KB
  Стена отделяет помещение от внешнего пространства наружные стены или от других помещений внутренние стены выполняя тем самым ограждающую функцию. Помимо различных дифференциаций можно выделить 2 типа стен: cамонесущие навесные Самонесущие стены опирающиеся на фундамент и несущие нагрузку от собственного веса включая нагрузку от балконов эркеров парапетов и других элементов стены по всей высоте но не воспринимающие нагрузки от других частей здания. В соответствии со строительной системой каждый тип стены содержит несколько...
36186. Балконы, лоджии и эркеры 23.87 KB
  Устройство балконов лоджий и эркеров повышает комфортность жилых и общественных помещений и в то же время обогащает пластику фасадов зданий. Лоджии в отличие от балконов по боковым сторонам ограждены стенами и могут быть как встроенными в объем здания так и выносными. ОГРАЖДЕНИЯ БАЛКОНОВ Могут выполняться из различных материалов: непрозрачного стекла пластиков древесных материалов волнистой листовой стали на каркасе и т. КОНСТРУКТИВНЫЕ РЕШЕНИЯ Конструктивное решение балконов зависит от схемы опирания балконной плиты консольное...
36187. Стропильные конструкции крыши, висячие и наслонные стропила 199.92 KB
  Основными несущими элементами крыши являются: мауэрлат стропила и обрешетка. Стропила: Висячие стропила. Висячие стропила опираются только на две крайние опоры например лишь на стены здания без промежуточных опор.
36188. Устройство современных кровель, вентилируемых и невентилируемых, инверсионных кровель 350 KB
  защитный слой выполняемый из мелкого гравия или просеянного шлака втопленного в окрасочный слой битума. Совмещенные крыши: а б невентилируемая; в вентилируемая; 1 защитный слой; 2 рулонный ковер; 3 стяжка; 4 термоизоляция; 5 пароизоляция; 6 вентилируемый канал; 7 несущая конструкция; 8 отделочный слой. Пароизоляционный слой в виде одного или двух слоев рубероида или пергамина на мастике предусматривают для защиты теплоизоляции от увлажнения водяными парами проникающими со стороны внутренних помещений. Поверх...
36189. Естественное освещение помещений 36 KB
  По действующим сейчас правилам все помещения предназначенные для длительного пребывания людей должны иметь естественное освещение. Клеффнера увеличение размеров окон свыше 1 10 1 8 площади пола помещения не дает соответствующего повышения средней освещенности горизонтальной поверхности в помещении. Равномерность освещения при северной ориентации помещений достигается при высоко поднятых окнах с перемычками небольшой высоты при светлых стенах и потолках большой площади окон небольшой глубине помещения а также применением занавесей....
36190. Входные узлы, тамбур, двери. Материалы и основные конструкции 19.19 KB
  Двери как створ различаются по материалу изготовления. Это железные деревянные стеклянные пластиковые алюминиевые двери и др. дция двери: Двери делятся на: внутренние или межкомнатные разделяющие комнаты и входные в квартиры для санитарнотехнических узлов наружные входные в здания тамбурные и специальные например запасные выходы звукоизоляционные двери.
36191. Огнестойкость строительных конструкций и классификация степени сгораемости материалов 43.5 KB
  Продолжительность в часах сопротивления строительной конструкции воздействию высокой температуры при пожаре до исчерпания ею несущей и ограждающей способности принято называть пределом огнестойкости. Предел огнестойкости конструкции определяется опытным или расчетным путем.Он измеряется в см и представляет собой размер повреждения конструкции в контрольной зоне в течение 15 мин. В соответствии со СНиП 11280 Противопожарные нормы проектирования зданий и сооружений по сгораемости строительные конструкции делятся на: несгораемые...
36192. Виды систем канализации. Устройство наружных и внутренних канализационных систем 20.42 KB
  Канализация представляет собой комплекс инженерных сооружений и мероприятий предназначенных для следующих целей: приема сточных вод в местах образования и транспортирования их к очистным сооружениям; очистки и обеззараживания сточных вод; утилизации полезных веществ содержащихся в сточных водах и в их осадке; выпуска очищенных вод в водоем. Системы канализации: Под системой канализации принято понимать совместное или разделительное отведение сточных вод. Общесплавными называют системы канализации при которых все сточные воды ...
36193. Двухтрубная система отопления с естественной циркуляцией и нижней разводкой 217.5 KB
  Удаление воздуха осуществляется либо через воздушные краны краны Маевского установленные на радиаторах отопления верхнего этажа либо через воздушную трубу соединяющую подающие стояки с расширительным баком. Преимущества нижней разводки отопления перед верхней разводкой: Меньшие потери теплоты так как магистральные трубопроводы не прокладываются на чердаке. При строительстве можно запускать систему отопления при недостроенных верхних этажах.