19964

Пастановка задачи о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы

Лекция

Физика

Поставить и решить задачу о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обратить внимание на то, что для этого случая можно получить аналитическое решение, пригодное для оценочных расчетов радиального поля температуры по элементам облучательного устройства, тепловой изоляции или определения местоположения и мощности нагревателя для создания нужного температурного режима на облучаемом образце.

Русский

2013-08-13

31.07 KB

1 чел.

Конспект занятия 12.

Цель.

    Поставить и решить задачу о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обратить внимание на то, что для этого случая можно получить аналитическое решение, пригодное  для  оценочных расчетов  радиального поля температуры по элементам облучательного устройства, тепловой изоляции или определения местоположения и мощности нагревателя для создания нужного температурного режима на облучаемом образце.

    

План.

1. Пастановка задачи о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы.      

2. Постановка и решение вспомогательных задач.

    Рассмотренная в предыдущем разделе задача реализуется   с помощью ЭВМ, дает пространственное распределение поля температуры для осесимметричной геометрии облучательного устройства, однако, неоправданно сложна, если ставится задача оценки тепловой изоляции или размещения нагревателя для создания нужного температурного режима на облучаемом образце.

    Рассмотрим задачу о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы.      

    Геометрические условия (рис.3.7) задают образец цилиндрической формы радиусом R1,окруженный концентричными экранами с радиусами R k ,  R k+1  . Последний экран R n является обечайкой установки или стенкой канала. Экраны и образец по длине настолько велики, что влиянием теплоотвода в торцы можно пренебречь.

    Физические условия рассматривают   образец, экраны и обечайку установки с теплопроводностью  λ = const   при расчете поля температуры внутри элемента, но  λ =f (Т) при рассмотрении задачи в целом.

   В образце, экранах и обечайке (стенке канала) действуют внутренние источники тепла  q V,k,k +1 (Bт/см3).

Рис.3.7 Модель расчета поля температуры при отсутствии утечек тепла в торцы.

λk.k+1

Rk

Rn

3

1

2

K

K+1

K+2

K+3

n-1

n

qv01v01

qv23

λ23

qvk.k+1

Q

α.Tcp

T=T(r)

Qk

λk,k+1

qvk,k+1

Rk

Tk

Tk+1

А

dT/dr|r=0=0

T=T(r)

λ01

qv01

R1

T1

Б

    Любой из экранов может быть нагревателем, и тогда его источники тепла можно выразить:

q V k,k+1= q V k,k+1,р + q V k,k+1, э

q V k,k+1,р -  внутренние источники тепла при действии радиации;

q V k,k+1,э  = j2 R -  внутренние источники тепла при действии

электрического тока,

где

j -плотность электрического тока (А/см2 ),  

ρ - удельное электросопротивление (Ом. cм).

    Пространство между экранами может быть:

- заполнено газом  с коэффициентом теплопроводности λк-1,к , который постоянен  при рассмотрении теплопередачи между  экранами и зависит от температуры при рассмотрении общей задачи.

-  вакуумировано.

    Заданы:

- интегральные степени черноты экранов.

- температура окружающей среда Tс и α.

    Источники тепла между экранами отсутствуют q V k-1,k= 0.

    Процесс передачи тепла осуществляется:  

-  между экранами: излучением, теплопроводностью и конвекцией;

-   в экранах - теплопроводностью;

- с внешней поверхности обечайки с коэффициентом

теплоотдачи α.

    Временные условия задают установившийся режим:

dT/dτ =0

   Граничные условия:

    I) краевые:

а) теплоотдача с внешней поверхности:

 

Qn = 2πα Rnn - Тc)                                                                         (6)

где   

Qn  - погонный тепловой поток с внешней поверхности обечайки (стенки канала);  

Тn   - температура обечайки;   

Тс - температура внешней среды;

б) поле температуры симметрично относительно образца:

dT/dr | r=0 =0                                                                                       (7)

         2) поток тепла между экранами:

Qk-1,k =  2π[ εk-1,k σ0 Rk-13k-1 + Т 2k-1Т k k-1 Т 2k 3k) +

+nк λк-1,к /ln (Rk/ Rk-1)](Тk-1-Tk) = hk-1,kk-1-Tk)                             (8)

где

εk-1,k= [1/ εk-1 + (1/εk-1-1)( Rk-1/ Rk)]-1 

- приведенный коэффициент интегральной степени черноты.

Более подробно последние соотношения    рассматривается в разделе 3.1;

         3) поток тепла между газом и твердой стенкой определяется соотношением:

Qk = - 2π λk-1,k  Rk-1 dT/dr | r= R(k-1)                                                    (9)

Qk-1 = Qk-1,k = Qk ,                                                                              (10)

так как источники тепла между экранами отсутствуют.

    Ход  решения задачи сводится к следующему:

1.Геометрия задачи и известное распределение внутренних источников тепла позволяют определить потоки тепла Qk  для

каждого значения   rк  в том числе и для rn – Qn ;

2.  По значению  Qn можно определить  температуру  поверхности  обечайки и далее температуру поверхности Тn-1 , решив задачу теплопроводности;

3. Зная условия теплообмена между экранами и поток Qn , можно найти   Тn-2 , а из решения задачи теплопроводности определить  

Тn-3  и т.д.;

4. Следует,  однако, помнить, что полученные значения Ti будут первыми  приближениями, так  как  условия  теплообмена между экранами зависят от Ti  и поэтому точное решение получают методом последовательных   приближений.

     Для решения задачи предварительно необходимо рассмотреть поле  температуры  в экране  и  образце.

     Поле температуры в экране ( рис.3.7 )

     На поверхность цилиндрической стенки действует погонный поток  тепла,  стенка  имеет  постоянный  коэффициент  теплопроводности  λк, к+1 , в ней действуют внутренние источники тепла qv,k,k+1 и задана температура поверхности Tк+1.

     Требуется определить поток тепла  Qк+1  , поле температуры на стенке, температуру и  разность температур (Tк -Tк+1)

Задача стационарная, граничные условия:

Qk = - 2π λk,k+1  Rk (dT/dr | r= Rk )                                              (11) ,

T| r=Rk+1 = Тk+1                                                                            (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

Поле температуры описывается уравнением:

d2T/dr2 + (1/r) ( dT/dr) + qv,k,k+1/ λк, к+1 = 0                             (13)

Решение  уравнения  имеет  вид:

T= - (r2 /4) qv,k,k+1/ λк, к+1 +C1ln r +C2                                      (14)

Используем граничные условия для определения постоянных.

Решение можно представить в следующем виде:

Т = Тk+1 + qv,k,k+1/2 λк, к+1[(R2k+1 r2)/2 – R2kln(Rk+1/r) ] +

(Qk/2 πλк, к+1) ln(Rk+1/r)                                                            (15)

Тk - Тk+1 = (qv,k,k+1/2 λк, к+1)[(R2k+1 R2k)/2 – R2kln(Rk+1/ Rk) ] +

(Qk/2 πλк, к+1) ln(Rk+1/ Rk)                                                          (16)

Qk+1 = - 2π λk,k+1  Rk+1 dT/dr | r= Rk+1= πqv,k,k+1(R2k+1 R2k) + Qk   (17)

Тk - Тk+1 = Av,k,k+1+ Ak,k+1                                                          (18)

    Поле температуры в образце ( рис.3.7.)

    На поверхности цилиндра с коэффициентом теплопроводности λ0,1   задана температура Т1   , внутри цилиндра действуют внутренние источники тепла qv01 , в центре цилиндра температура имеет экстремум.

Граничные условия:

 dT/dr | r= 0                                                                                     (19)

T | r= R1= Т1                                                                                    (20)

    Поле температуры описывается уравнением (13) и (14).

Из (19)  C1 = 0, тогда  из (20) определяем:

С2 = Т1+ qv,0,1 R21/4 λ0,1

Поле температуры в цилиндре (образце) имеет вид:

Т=Т1+ qv,0,1 (R21-r2)/4 λк, к+1

Поток тепла с поверхности цилиндра:

Qk = - 2π λ0,1  R1 dT/dr | r= R1 = πqv,0,1R21 = πqv,0,1(R21 R20),

где R0 = 0

Определяем потоки тепла, пользуясь результатами задач, рассмотренных выше.


 

А также другие работы, которые могут Вас заинтересовать

54300. Значение эпохи Возрождения в истории европейской культуры 16.82 KB
  Эпоха Возрождения – один из самых ярких периодов в истории развития европейской культуры. Примерные хронологические рамки эпохи: начало XIV — последняя четверть XVI века и в некоторых случаях — первые десятилетия XVII века (например, в Англии и, особенно, в Испании).
54301. Перший і другий закони Г. Менделя, їх статистичний характер і цитологічні основи 927 KB
  Вивчення визначеної теми в рамках усієї дисципліни сприяє формуванню у студентів знань про закони спадковості: домінування і розщеплення, про їх статистичний характер і цитологічні основи, а також формуванню умінь застосовувати ЦІ знання в вирішенні проблем людства/спадкових захворювання, селекції організмів.
54302. Luminaries of 19-th Century. Dmytro Mendeleiev. Значення періодичного закону 611 KB
  Шляхом інтеграції англійської мови та хімії розширити світогляд учнів і збагатити їхні знання в груповій роботі - вчити виділяти головне порівнювати, робити висновки, виховувати товариськість взаємодопомогу, зокрема, на прикладі багатогранної наукової діяльності Д. І. Менделєєва підкреслити оригінальність, широкий діапазон його наукових інтересів. Розвивати бажання продовжувати освіту.
54303. КОМУНІКАЦІЇ В МЕНЕДЖМЕНТІ 141 KB
  Методичне забезпечення: Роздатковий матеріал: Комплект карток Ситуаційні вправи з мотивацій в менеджменті Комплект карток Вправа на розпізнавання термінів Комплект карток Характерні ознаки комунікацій Комплект карток Ситуаційні вправи з комунікацій в менеджменті Ілюстративний матеріал схеми рисунки таблиці до теми Комунікації в менеджменті Наочні посібники: ПЕОМ MS PowerPoint Куточок Менеджеру на замітку Опорний конспект з курсу Менеджмент Термінологічний словник менеджера початківця Реферати та...
54304. Частини тіла 5 клас 169 KB
  Wir haben in der vorigen Stunde das Thema „ Der Mensch“ begonnen und haben die Körperteile des Menschen gelernt. Wie ihr diese Wörter kennt, zeigt ein Wortdiktat. Aber ihr werdet das Diktat nicht schreiben, sondern malen.
54305. СЕТЕВОЕ И КАЛЕНДАРНОЕ ПЛАНИРОВАНИЕ 750.5 KB
  В методических указаниях изложены основные особенности планирования и управления проектами. Рассмотрены основные шаги при составлении примерного плана-графика проекта создания требований к экономической и информационной безопасности для СДО ОАО РЖД с использованием Microsoft Project 2003 в среде Windows 2000/ХР. Рассмотрены основные средства Microsoft Project 2003 для эффективного управления всеми задачами и ресурсами проекта.
54306. Де творчість – там і успіх 73.5 KB
  А до звичайних учнів які не підходять здавалось би ні під яку категорію все якось не доходять руки. Їх можна обєднати в три групи: високий рівень управління системою виховної роботи який забезпечує досягнення найоптимальнішого за певних умов результату; високий рівень функціонування системи виховної роботи який обумовлює успішне виконання завдань поставлених перед навчальним закладом; високий рівень вихованості учнів їх готовності до самостійного життя та праці. Велика роль при цьому відводиться учнівському самоврядуванню.
54307. Як досягти триєдиної мети уроку 3.98 MB
  Працюючи над розробкою моделей уроків, треба прагнути побудувати їх на оптимальному поєднанні традиційних, перевірених часом принципів дидактики, таких як науковість, відповідність віковим особливостям з інноваційними підходами особистісно орієнтованого навчання.