19964

Пастановка задачи о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы

Лекция

Физика

Поставить и решить задачу о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обратить внимание на то, что для этого случая можно получить аналитическое решение, пригодное для оценочных расчетов радиального поля температуры по элементам облучательного устройства, тепловой изоляции или определения местоположения и мощности нагревателя для создания нужного температурного режима на облучаемом образце.

Русский

2013-08-13

31.07 KB

1 чел.

Конспект занятия 12.

Цель.

    Поставить и решить задачу о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обратить внимание на то, что для этого случая можно получить аналитическое решение, пригодное  для  оценочных расчетов  радиального поля температуры по элементам облучательного устройства, тепловой изоляции или определения местоположения и мощности нагревателя для создания нужного температурного режима на облучаемом образце.

    

План.

1. Пастановка задачи о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы.      

2. Постановка и решение вспомогательных задач.

    Рассмотренная в предыдущем разделе задача реализуется   с помощью ЭВМ, дает пространственное распределение поля температуры для осесимметричной геометрии облучательного устройства, однако, неоправданно сложна, если ставится задача оценки тепловой изоляции или размещения нагревателя для создания нужного температурного режима на облучаемом образце.

    Рассмотрим задачу о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы.      

    Геометрические условия (рис.3.7) задают образец цилиндрической формы радиусом R1,окруженный концентричными экранами с радиусами R k ,  R k+1  . Последний экран R n является обечайкой установки или стенкой канала. Экраны и образец по длине настолько велики, что влиянием теплоотвода в торцы можно пренебречь.

    Физические условия рассматривают   образец, экраны и обечайку установки с теплопроводностью  λ = const   при расчете поля температуры внутри элемента, но  λ =f (Т) при рассмотрении задачи в целом.

   В образце, экранах и обечайке (стенке канала) действуют внутренние источники тепла  q V,k,k +1 (Bт/см3).

Рис.3.7 Модель расчета поля температуры при отсутствии утечек тепла в торцы.

λk.k+1

Rk

Rn

3

1

2

K

K+1

K+2

K+3

n-1

n

qv01v01

qv23

λ23

qvk.k+1

Q

α.Tcp

T=T(r)

Qk

λk,k+1

qvk,k+1

Rk

Tk

Tk+1

А

dT/dr|r=0=0

T=T(r)

λ01

qv01

R1

T1

Б

    Любой из экранов может быть нагревателем, и тогда его источники тепла можно выразить:

q V k,k+1= q V k,k+1,р + q V k,k+1, э

q V k,k+1,р -  внутренние источники тепла при действии радиации;

q V k,k+1,э  = j2 R -  внутренние источники тепла при действии

электрического тока,

где

j -плотность электрического тока (А/см2 ),  

ρ - удельное электросопротивление (Ом. cм).

    Пространство между экранами может быть:

- заполнено газом  с коэффициентом теплопроводности λк-1,к , который постоянен  при рассмотрении теплопередачи между  экранами и зависит от температуры при рассмотрении общей задачи.

-  вакуумировано.

    Заданы:

- интегральные степени черноты экранов.

- температура окружающей среда Tс и α.

    Источники тепла между экранами отсутствуют q V k-1,k= 0.

    Процесс передачи тепла осуществляется:  

-  между экранами: излучением, теплопроводностью и конвекцией;

-   в экранах - теплопроводностью;

- с внешней поверхности обечайки с коэффициентом

теплоотдачи α.

    Временные условия задают установившийся режим:

dT/dτ =0

   Граничные условия:

    I) краевые:

а) теплоотдача с внешней поверхности:

 

Qn = 2πα Rnn - Тc)                                                                         (6)

где   

Qn  - погонный тепловой поток с внешней поверхности обечайки (стенки канала);  

Тn   - температура обечайки;   

Тс - температура внешней среды;

б) поле температуры симметрично относительно образца:

dT/dr | r=0 =0                                                                                       (7)

         2) поток тепла между экранами:

Qk-1,k =  2π[ εk-1,k σ0 Rk-13k-1 + Т 2k-1Т k k-1 Т 2k 3k) +

+nк λк-1,к /ln (Rk/ Rk-1)](Тk-1-Tk) = hk-1,kk-1-Tk)                             (8)

где

εk-1,k= [1/ εk-1 + (1/εk-1-1)( Rk-1/ Rk)]-1 

- приведенный коэффициент интегральной степени черноты.

Более подробно последние соотношения    рассматривается в разделе 3.1;

         3) поток тепла между газом и твердой стенкой определяется соотношением:

Qk = - 2π λk-1,k  Rk-1 dT/dr | r= R(k-1)                                                    (9)

Qk-1 = Qk-1,k = Qk ,                                                                              (10)

так как источники тепла между экранами отсутствуют.

    Ход  решения задачи сводится к следующему:

1.Геометрия задачи и известное распределение внутренних источников тепла позволяют определить потоки тепла Qk  для

каждого значения   rк  в том числе и для rn – Qn ;

2.  По значению  Qn можно определить  температуру  поверхности  обечайки и далее температуру поверхности Тn-1 , решив задачу теплопроводности;

3. Зная условия теплообмена между экранами и поток Qn , можно найти   Тn-2 , а из решения задачи теплопроводности определить  

Тn-3  и т.д.;

4. Следует,  однако, помнить, что полученные значения Ti будут первыми  приближениями, так  как  условия  теплообмена между экранами зависят от Ti  и поэтому точное решение получают методом последовательных   приближений.

     Для решения задачи предварительно необходимо рассмотреть поле  температуры  в экране  и  образце.

     Поле температуры в экране ( рис.3.7 )

     На поверхность цилиндрической стенки действует погонный поток  тепла,  стенка  имеет  постоянный  коэффициент  теплопроводности  λк, к+1 , в ней действуют внутренние источники тепла qv,k,k+1 и задана температура поверхности Tк+1.

     Требуется определить поток тепла  Qк+1  , поле температуры на стенке, температуру и  разность температур (Tк -Tк+1)

Задача стационарная, граничные условия:

Qk = - 2π λk,k+1  Rk (dT/dr | r= Rk )                                              (11) ,

T| r=Rk+1 = Тk+1                                                                            (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

Поле температуры описывается уравнением:

d2T/dr2 + (1/r) ( dT/dr) + qv,k,k+1/ λк, к+1 = 0                             (13)

Решение  уравнения  имеет  вид:

T= - (r2 /4) qv,k,k+1/ λк, к+1 +C1ln r +C2                                      (14)

Используем граничные условия для определения постоянных.

Решение можно представить в следующем виде:

Т = Тk+1 + qv,k,k+1/2 λк, к+1[(R2k+1 r2)/2 – R2kln(Rk+1/r) ] +

(Qk/2 πλк, к+1) ln(Rk+1/r)                                                            (15)

Тk - Тk+1 = (qv,k,k+1/2 λк, к+1)[(R2k+1 R2k)/2 – R2kln(Rk+1/ Rk) ] +

(Qk/2 πλк, к+1) ln(Rk+1/ Rk)                                                          (16)

Qk+1 = - 2π λk,k+1  Rk+1 dT/dr | r= Rk+1= πqv,k,k+1(R2k+1 R2k) + Qk   (17)

Тk - Тk+1 = Av,k,k+1+ Ak,k+1                                                          (18)

    Поле температуры в образце ( рис.3.7.)

    На поверхности цилиндра с коэффициентом теплопроводности λ0,1   задана температура Т1   , внутри цилиндра действуют внутренние источники тепла qv01 , в центре цилиндра температура имеет экстремум.

Граничные условия:

 dT/dr | r= 0                                                                                     (19)

T | r= R1= Т1                                                                                    (20)

    Поле температуры описывается уравнением (13) и (14).

Из (19)  C1 = 0, тогда  из (20) определяем:

С2 = Т1+ qv,0,1 R21/4 λ0,1

Поле температуры в цилиндре (образце) имеет вид:

Т=Т1+ qv,0,1 (R21-r2)/4 λк, к+1

Поток тепла с поверхности цилиндра:

Qk = - 2π λ0,1  R1 dT/dr | r= R1 = πqv,0,1R21 = πqv,0,1(R21 R20),

где R0 = 0

Определяем потоки тепла, пользуясь результатами задач, рассмотренных выше.


 

А также другие работы, которые могут Вас заинтересовать

33937. Парная регрессия на основе метода наименьших квадратов 19.28 KB
  Для определения параметров уравнения парной регрессии используем метод наименьших квадратов. При применении этого метода для нахождения функции которая бы наилучшим образом соответствовала эмпирическим данным считается что сумма квадратов отклонений эмпирических точек от теоретической линии регрессии должна быть величиной минимальной. Критерий метода наименьших квадратов: ...
33938. Собственно корреляционные параметрические методы изучения связи 15.5 KB
  соответствия эмпирическим данным рассчитывают теоретическое корреляционное отношение η теоретический коэффициент детерминации η индекс корреляции R а для линейной формы линейный коэффициент корреляции r и линейный коэффициент детерминации r. Линейный коэффициент корреляции К.Пирсона помимо силы связи показывает и ее направление; определяется по следующей формуле: 34 Линейный коэффициент корреляции принимает...
33939. Оценка значимости корреляционной связи 13.59 KB
  Факторная дисперсия определяется по формуле: 43 где k 1 число степеней свободы для Остаточную дисперсию используя правило сложения дисперсий можно определить по формуле: 44 где n k число степеней свобод для . Число степеней свободы для общей суммы квадратов отклонений будет равно: k 1 n k = n 1....
33940. Измерение связей неколичественных переменных 13.78 KB
  Например при обследовании группы населения одного из регионов России в отчетном периоде задаются вопросы: 1й вопрос о месте проживания следует выбрать правильный ответ: 1. 2й вопрос о принадлежности к полу следует выбрать правильный ответ: 1. Представив суммарную численность ответов на каждый вопрос буквенными символами покажем как можно построить четырехклеточную таблицу которая поможет нам в дальнейших расчетах. Взаимосвязь между ответами на два вопроса социологического обследования.
33941. Исследование и анализ сред виртуальной реальности, используемых в системах компьютерной визуализации 543 KB
  Работа посвящена исследованию и сравнительному анализу сред виртуальной реальности в связи с проектирование и разработкой систем компьютерной визуализации, предназначенных для представления больших и очень больших объемов информации, генерируемых при супервычислениях
33942. Статистическое наблюдение, понятие, этапы, задачи 12.14 KB
  В зависимости от задач и целей исследования определяются объекты наблюдения единицы наблюдения и отчетные единицы разраб программа стат. наблюдения. При подготовке наблюдения необходимо определить что подлежит изучению т. определить объект наблюдения.
33943. Программно-методологические вопросы и организационные вопросы наблюдения 12.51 KB
  Надо решить следующие вопросы: Объект наблюдения совокупность предметов явлений у которых должны быть собраны сведения. Всякий объект массовых наблюдений состоит их отдельных единиц поэтому надо решить вопрос о том каков тот элемент совокупности который послужит единицей наблюдения. Единица наблюдения это составной элемент объекта который является носителем признаков подлежащих регистрации и основой счета.
33944. Основные организационные формы, виды и способы статистического наблюдения 14.46 KB
  Понятие статистического наблюдения Статистическое наблюдение это сбор необходимых данных по явлениям процессам общественной жизни. Формы статистического наблюдения Различают две основные формы статистического наблюдения отчетность и специально организованное наблюдение. Специально организованное наблюдение такое наблюдение которое организуется со специальной целью на определенную дату для получения данных которые в силу различных причин не собираются статистической отчетност а также с целью проверки данных статистической отчетности....
33945. Ошибки статистического наблюдения и контроль точности информации наблюдения 13.42 KB
  Ошибки статистического наблюдения и контроль точности информации наблюдения. В зависимости от причин возникновения различают ошибки регистрации и ошибки репрезентативности. Ошибки регистрации это отклонения между значением показателя полученного в ходе статистического наблюдения и фактическим действительным его значением. Ошибки регистрации бывают случайные и систематические.