19964

Пастановка задачи о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы

Лекция

Физика

Поставить и решить задачу о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обратить внимание на то, что для этого случая можно получить аналитическое решение, пригодное для оценочных расчетов радиального поля температуры по элементам облучательного устройства, тепловой изоляции или определения местоположения и мощности нагревателя для создания нужного температурного режима на облучаемом образце.

Русский

2013-08-13

31.07 KB

1 чел.

Конспект занятия 12.

Цель.

    Поставить и решить задачу о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обратить внимание на то, что для этого случая можно получить аналитическое решение, пригодное  для  оценочных расчетов  радиального поля температуры по элементам облучательного устройства, тепловой изоляции или определения местоположения и мощности нагревателя для создания нужного температурного режима на облучаемом образце.

    

План.

1. Пастановка задачи о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы.      

2. Постановка и решение вспомогательных задач.

    Рассмотренная в предыдущем разделе задача реализуется   с помощью ЭВМ, дает пространственное распределение поля температуры для осесимметричной геометрии облучательного устройства, однако, неоправданно сложна, если ставится задача оценки тепловой изоляции или размещения нагревателя для создания нужного температурного режима на облучаемом образце.

    Рассмотрим задачу о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы.      

    Геометрические условия (рис.3.7) задают образец цилиндрической формы радиусом R1,окруженный концентричными экранами с радиусами R k ,  R k+1  . Последний экран R n является обечайкой установки или стенкой канала. Экраны и образец по длине настолько велики, что влиянием теплоотвода в торцы можно пренебречь.

    Физические условия рассматривают   образец, экраны и обечайку установки с теплопроводностью  λ = const   при расчете поля температуры внутри элемента, но  λ =f (Т) при рассмотрении задачи в целом.

   В образце, экранах и обечайке (стенке канала) действуют внутренние источники тепла  q V,k,k +1 (Bт/см3).

Рис.3.7 Модель расчета поля температуры при отсутствии утечек тепла в торцы.

λk.k+1

Rk

Rn

3

1

2

K

K+1

K+2

K+3

n-1

n

qv01v01

qv23

λ23

qvk.k+1

Q

α.Tcp

T=T(r)

Qk

λk,k+1

qvk,k+1

Rk

Tk

Tk+1

А

dT/dr|r=0=0

T=T(r)

λ01

qv01

R1

T1

Б

    Любой из экранов может быть нагревателем, и тогда его источники тепла можно выразить:

q V k,k+1= q V k,k+1,р + q V k,k+1, э

q V k,k+1,р -  внутренние источники тепла при действии радиации;

q V k,k+1,э  = j2 R -  внутренние источники тепла при действии

электрического тока,

где

j -плотность электрического тока (А/см2 ),  

ρ - удельное электросопротивление (Ом. cм).

    Пространство между экранами может быть:

- заполнено газом  с коэффициентом теплопроводности λк-1,к , который постоянен  при рассмотрении теплопередачи между  экранами и зависит от температуры при рассмотрении общей задачи.

-  вакуумировано.

    Заданы:

- интегральные степени черноты экранов.

- температура окружающей среда Tс и α.

    Источники тепла между экранами отсутствуют q V k-1,k= 0.

    Процесс передачи тепла осуществляется:  

-  между экранами: излучением, теплопроводностью и конвекцией;

-   в экранах - теплопроводностью;

- с внешней поверхности обечайки с коэффициентом

теплоотдачи α.

    Временные условия задают установившийся режим:

dT/dτ =0

   Граничные условия:

    I) краевые:

а) теплоотдача с внешней поверхности:

 

Qn = 2πα Rnn - Тc)                                                                         (6)

где   

Qn  - погонный тепловой поток с внешней поверхности обечайки (стенки канала);  

Тn   - температура обечайки;   

Тс - температура внешней среды;

б) поле температуры симметрично относительно образца:

dT/dr | r=0 =0                                                                                       (7)

         2) поток тепла между экранами:

Qk-1,k =  2π[ εk-1,k σ0 Rk-13k-1 + Т 2k-1Т k k-1 Т 2k 3k) +

+nк λк-1,к /ln (Rk/ Rk-1)](Тk-1-Tk) = hk-1,kk-1-Tk)                             (8)

где

εk-1,k= [1/ εk-1 + (1/εk-1-1)( Rk-1/ Rk)]-1 

- приведенный коэффициент интегральной степени черноты.

Более подробно последние соотношения    рассматривается в разделе 3.1;

         3) поток тепла между газом и твердой стенкой определяется соотношением:

Qk = - 2π λk-1,k  Rk-1 dT/dr | r= R(k-1)                                                    (9)

Qk-1 = Qk-1,k = Qk ,                                                                              (10)

так как источники тепла между экранами отсутствуют.

    Ход  решения задачи сводится к следующему:

1.Геометрия задачи и известное распределение внутренних источников тепла позволяют определить потоки тепла Qk  для

каждого значения   rк  в том числе и для rn – Qn ;

2.  По значению  Qn можно определить  температуру  поверхности  обечайки и далее температуру поверхности Тn-1 , решив задачу теплопроводности;

3. Зная условия теплообмена между экранами и поток Qn , можно найти   Тn-2 , а из решения задачи теплопроводности определить  

Тn-3  и т.д.;

4. Следует,  однако, помнить, что полученные значения Ti будут первыми  приближениями, так  как  условия  теплообмена между экранами зависят от Ti  и поэтому точное решение получают методом последовательных   приближений.

     Для решения задачи предварительно необходимо рассмотреть поле  температуры  в экране  и  образце.

     Поле температуры в экране ( рис.3.7 )

     На поверхность цилиндрической стенки действует погонный поток  тепла,  стенка  имеет  постоянный  коэффициент  теплопроводности  λк, к+1 , в ней действуют внутренние источники тепла qv,k,k+1 и задана температура поверхности Tк+1.

     Требуется определить поток тепла  Qк+1  , поле температуры на стенке, температуру и  разность температур (Tк -Tк+1)

Задача стационарная, граничные условия:

Qk = - 2π λk,k+1  Rk (dT/dr | r= Rk )                                              (11) ,

T| r=Rk+1 = Тk+1                                                                            (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

Поле температуры описывается уравнением:

d2T/dr2 + (1/r) ( dT/dr) + qv,k,k+1/ λк, к+1 = 0                             (13)

Решение  уравнения  имеет  вид:

T= - (r2 /4) qv,k,k+1/ λк, к+1 +C1ln r +C2                                      (14)

Используем граничные условия для определения постоянных.

Решение можно представить в следующем виде:

Т = Тk+1 + qv,k,k+1/2 λк, к+1[(R2k+1 r2)/2 – R2kln(Rk+1/r) ] +

(Qk/2 πλк, к+1) ln(Rk+1/r)                                                            (15)

Тk - Тk+1 = (qv,k,k+1/2 λк, к+1)[(R2k+1 R2k)/2 – R2kln(Rk+1/ Rk) ] +

(Qk/2 πλк, к+1) ln(Rk+1/ Rk)                                                          (16)

Qk+1 = - 2π λk,k+1  Rk+1 dT/dr | r= Rk+1= πqv,k,k+1(R2k+1 R2k) + Qk   (17)

Тk - Тk+1 = Av,k,k+1+ Ak,k+1                                                          (18)

    Поле температуры в образце ( рис.3.7.)

    На поверхности цилиндра с коэффициентом теплопроводности λ0,1   задана температура Т1   , внутри цилиндра действуют внутренние источники тепла qv01 , в центре цилиндра температура имеет экстремум.

Граничные условия:

 dT/dr | r= 0                                                                                     (19)

T | r= R1= Т1                                                                                    (20)

    Поле температуры описывается уравнением (13) и (14).

Из (19)  C1 = 0, тогда  из (20) определяем:

С2 = Т1+ qv,0,1 R21/4 λ0,1

Поле температуры в цилиндре (образце) имеет вид:

Т=Т1+ qv,0,1 (R21-r2)/4 λк, к+1

Поток тепла с поверхности цилиндра:

Qk = - 2π λ0,1  R1 dT/dr | r= R1 = πqv,0,1R21 = πqv,0,1(R21 R20),

где R0 = 0

Определяем потоки тепла, пользуясь результатами задач, рассмотренных выше.


 

А также другие работы, которые могут Вас заинтересовать

7071. Изучение микроструктуры и механических свойств белых и серых чугунов 119 KB
  Изучение микроструктуры и механических свойств белых и серых чугунов. Цель работы - изучение превращений, проходящих в железоуглеродистых сплавах при реализации метастабильного и стабильного равновесий, и установление взаимосвязи структуры и механ...
7072. Моделирование разброса выходного параметра устройства РЭС и ЭВС методом статистических испытаний 174.95 KB
  Моделирование разброса выходного параметра устройства РЭС и ЭВС методом статистических испытаний Цель работы. Определить закон распределения выходного параметра устройства РЭС и ЭВС методом статистического моделирования (методом Монте-Карло). По пол...
7073. Разработка подачи стола продольно-строгального станка 438 KB
  Введение К современным металлорежущим станкам предъявляются следующие основные требования: возможно большая производительность при достаточной точности формы и размеров, а также чистоты поверхности обрабатываемых на станке изделий прост...
7074. Привод механизма передвижения нормального мостового крана 381 KB
  Механизм передвижения крана работает в следующих режимах: передвижение с грузом на расстояние со скоростью, торможение, стоянка секунд, движение в том же направлении без груза со скоростью на расстояние, торможение, стоянка секунд, движение с грузом в обратном направлении на расстояние с номинальной скоростью, стоянка секунд.
7075. Знакомство с методами проектирования программ на языках высокого уровня С++ 280 KB
  1. Цель работы Знакомство с методами проектирования программ на языках высокого уровня С++. 2. Задание на работу В программе калькулятор необходимо реализовать: пункт главного меню Справка, состоящий из двух подпунктов Информация об авторе...
7076. Методы проектирования программ на языках высокого уровня С++ 115.5 KB
  1. Цель работы Знакомство с методами проектирования программ на языках высокого уровня С++. 2. Задание на работу В программе необходимо реализовать: пункт главного меню Справка, состоящий из двух подпунктов Информация об авторе и Информация о п...
7077. Проектирование программ на языках высокого уровня С++ 172 KB
  Реализовать процедуру поиска страниц, свойство Caption или компонент типа TMemo которых содержит задаваемое слово.
7078. Изучение и компьютерное моделирование переходных процессов, возникающих при коммутациях в цепях первого порядка 121 KB
  Цель работы: Изучение и компьютерное моделирование переходных процессов, возникающих при коммутациях в цепях первого порядка, содержащих сопротивление и емкость либо сопротивление и индуктивность. В лабораторной работе необходимо исследовать зависим...
7079. Доходы от собственности 94.5 KB
  Доходы от собственности Одним из элементов доходов от собственности являются доходы по ценным бумагам. Ценная бумага - это форма существования капитала, отличная от его товарной, производительной и денежной форм, которая может передаваться вмес...