19965

Решение задачи о поле температуры в облучательном устройстве при отсутствии утечек тепла в торцы

Лекция

Физика

Поставить и решить вспомогательную задачу Б и закончить рассмотрение задачи о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обосновать необходимость использования метода конечных элементов (МКЭ) для расчета полей температуры в облучаемых образцах. Приступить к постановке задачи расчета поля температуры МКЭ для цилиндрического образца.

Русский

2013-08-13

39.33 KB

0 чел.

Конспект занятия 13.

Цель.

    Поставить и решить вспомогательную задачу Б и закончить рассмотрение задачи о  радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обосновать необходимость использования метода конечных элементов  (МКЭ) для расчета полей температуры в облучаемых образцах. Приступить к постановке задачи расчета поля температуры МКЭ для цилиндрического образца.

План.

1. Постановка и решение вспомогательной задачи Б.

2.Решение задачи о поле  температуры в облучательном устройстве при отсутствии утечек тепла в торцы.      

3. Постановка задачи расчета поля температуры МКЭ для цилиндрического образца.

   Поле температуры в образце (задача Б)

    На поверхности цилиндра с коэффициентом теплопроводности λ0,1   задана температура Т1   , внутри цилиндра действуют внутренние источники тепла qv01 , в центре цилиндра температура имеет экстремум.

Граничные условия:

 dT/dr | r= 0                                                                                           (19)

T | r= R1= Т1                                                                                          (20)

    Поле температуры описывается уравнением (13) и (14).

Из (19)  C1 = 0, тогда  из (20) определяем:

С2 = Т1+ qv,0,1 R21/4 λ0,1

Поле температуры в цилиндре (образце) имеет вид:

Рис.3.7 Модель расчета поля температуры при отсутствии утечек тепла в торцы.

λk.k+1

Rk

Rn

3

1

2

K

K+1

K+2

K+3

n-1

n

qv01v01

qv23

λ23

qvk.k+1

Q

α.Tcp

T=T(r)

Qk

λk,k+1

qvk,k+1

Rk

Tk

Tk+1

А

dT/dr|r=0=0

T=T(r)

λ01

qv01

R1

T1

Б

Т=Т1+ qv,0,1 (R21-r2)/4 λк, к+1

Поток тепла с поверхности цилиндра:

Qk = - 2π λ0,1  R1 dT/dr | r= R1 = πqv,0,1R21 = πqv,0,1(R21 R20),

где R0 = 0

Определяем потоки тепла, пользуясь результатами задач, рассмотренных выше:

        n

Qn = Σ πqv,k,k+1(R2k+1 R2k) при R0 = 0.

       k=0

     Используя краевое условие (6), имеем:

Tn -Tc = Qn/2 παRn

     Определяем перепады температуры:

- на оболочке

Тn-1 - Тn = Av,n-1,n+ An-1,n ,

- в газовой прослойке:

Tn -Tc = Qn-2,n-1 /hn-2,n-1

- на к-ом экране:

Тk - Тk+1 = Av,k,k+1+ Ak,k+1 ,

- в к-1 прослойке:

Тk-1 - Тk = Qk-1,k /hk-1,k

-в экране с радиусами R2 и  R3 :

T2T3 = Av,2,3+ A2,3 ,

- в прослойке с радиусами R1 и  R2:

Т1 - Т2 = Q1,2 /h1,2 ,

- в образце:

Т0 1= qv,0,1 R21/4 λ0,1

    Последовательное суммирование вышеприведенных разностей дает возможность определить поле температуры по радиусу облучательного устройства.

    Исследование свойств материалов в реакторном эксперименте осложняется наличием интенсивных тепловыделений в испытуемом     образце.  Следствием этого являются  градиенты температуры    по объему образца и появление термонапряжений, которые в  ряде случаев могут приводить к растрескиванию образца. Существенными могут оказаться явления, обусловленные   наличием градиента плотности тепловыделения в материале.

    В целом, требования к оценке поведения образца в реакторном эксперименте должны быть более строгими, расчеты температурных полей более подробными и точными.

    Для расчета температурных полей в образце реакторной установки целесообразно воспользоваться методом конечных элементов.

    Постановка задачи.

1.Геометрические условия задают цилиндрический осе симметричный образец.

2.Физические   условия   задают    распределение     источников

тепловыделения  в образце и  коэффициент теплопроводности, зависящий от температуры.

3.Временные условия рассматривают стационарную задачу:

dT/ =0                                                                                          (21)

4.Граничные условия.

На торцевых поверхностях образца предлагается использовать два варианта граничных условий:

- условия первого рода:

T|z=0, 0≤  rR = T (0, r)                                                                         (22)

T|z=H, 0≤  rR = T (H, r)                                                                       (23)

- условия третьего рода:

- λ dT/dr |z=0, 0≤  rR = α (0,r) [T (0, r) – Tc0]                                    (24)

- λ dT/dr |z=H, 0≤  rR = α (H,r) [T (H, r) – TcH]                                (25)

   На внешней боковой поверхности цилиндрического образца задаются граничные условия третьего рода:

Q= 2πRα(z,r) [T (z, r) – Tcr]                                                             (26)

    Решение задачи методом конечных элементов.

    Дискретизация геометрической области проводится по схеме представленной в верхней части рис. 3.8.

    Определение стационарных двумерных полей температуры основано на простейшем варианте метода конечных элементов. Ищется решение стационарного уравнения теплопроводности:

                            

div [ λ(T) grad T( r )] +  qv(r) =0 ,                                                    (27)         

где

Т(r) - температура образца;

λ(Т) - коэффициент теплопроводности в общем случае, зависящий от температуры;

qv(r)- плотность внутренних источников тепла может быть функцией координат.

    Граничные условия, как уже отмечалось, задают либо температуру, либо тепловой поток. В соответствии с методом конечных

элементов и с учетом симметрии задачи цилиндрический образец разбивается на N кольцевых элементов и  М элементов по высоте.  

    Возьмем толщину кольцевых элементов постоянной. Затем для каждого элемента составляется уравнение теплового баланса,  при этом предполагается, что величины λ и qv постоянны для данного элемента.

    В рассматриваемом случае уравнения теплового баланса    элементов принимают вид:

N(i)

Σ γ(i,j)[T(i)-T(j)] + qv(i)S(i)+QL(i) = 0                                           (28)

j=1

где

S(i)- площадь получаемого  при таком разбиении элемента;

Т(i)- температура элемента;

qv(i) плотность внутренних источников тепла;

QL(i)- поток тепла в элемент из внешней среды;

γ( i,j)- коэффициент, характеризующий перенос тепла между соседними i-ым и j -ым элементами;

N(i)- число элементов, обменивающихся теплом с элементом, равно четырем во внутренней области и трем для элементов, лежащих на границе области.

При составлении системы уравнений (28) предполагалось, что потоки тепла Q между соседними элементами пропорциональны разности температур в этих элементах:

Q = γ( i,j) [T(i)-T(j)]                                                                          (29)

    Выражение, определяющее  γ( i,j)  , может быть получено при рассмотрении  соотношения для потока тепла между   i-ым  и  j -ым  элементами в радиальном направлении:

Q = λ Lij grad T  | ij                                                                            (30)

где λ - коэффициент теплопроводности материала;   L- протяженность границы между элементами; grad T  | ij - градиент температуры на границе между   i-ым и  j -ым элементами.

H 

r

z

r 

Рис. 3.8

0

0

0

0

0

0

0

0

M*N

Рис.3.8. Схема расположения конечных элементов и структура матрицы [B].


 

А также другие работы, которые могут Вас заинтересовать

43073. Народное хозяйство и природно-климатические условия проектирования 88 KB
  Климат: почти вся территория Томской области находится в пределах таежной зоны. Климатические условия южных и северных районов Томской области заметно отличаются ввиду того что расстояние между северной и южной границами области по меридиану достигает 600 километров. Климатические характеристики северных районов области отличаются большей суровостью и продолжительностью зимнего сезона. На долю речных долин приходится 1 5 территории Томской области.
43074. БЕЗОПАСНОСТЬ ОБЪЕКТОВ, ЗДАНИЙ И СООРУЖЕНИЙ 12.44 MB
  Разработка проекта пассивной противопожарной защиты здания 15 2.2 Характеристика здания по заданию и предварительная планировка здания 16 2.3 Определение категории здания по взрывопожарной и пожарной опасности 19 2.1 Деление здания на пожарные отсеки 20 2.
43075. РАСЧЕТ И КОНСТРУИРОВАНИЕ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ ЖЕЛЕЗОБЕТОННОЙ ПАНЕЛИ СБОРНОГО ПЕРЕКРЫТИЯ МНОГОЭТАЖНОГО ЗДАНИЯ 2.92 MB
  Характеристики арматуры и бетона. Подбор продольно напрягаемой рабочей арматуры из условия прочности сечения нормального к продольной оси панели. Определение необходимости постановки поперечной арматуры проектирование постановки косвенной арматуры исходя из конструктивных требований строительных норм. Учет влияния длины зоны передачи напряжений продольной напрягаемой арматуры.
43077. Расчет электромагнитных переходных процессов при нарушении симметрии трехфазной цепи 9.86 MB
  Составим схему замещения для прямой последовательности: Определим параметры схемы замещения для прямой последовательности: С: Л1: Л2: Т2: Н1: Н2: АД: Р: Расчет параметров для реактора не требуется т. Т1: Т3: Г12: Найдем и свернув схему используя законы последовательного и параллельного соединения: Составим схему замещения обратной последовательности: Определим параметры схемы замещения...
43078. Расчет усилителя мощности низкой частоты 1.37 MB
  Усилитель мощности. В зависимости от типа усиливаемого параметра усилительные устройства делятся на усилители тока напряжения и мощности. Одним из ответственных узлов звукозаписывающей аппаратуры является усилитель мощности.
43079. Электрический привод системы “генератор-двигатель” 1017 KB
  Номер варианта Закон изменения момента сопротивления рабочей машины Мсм Нм Момент инерции рабочей машины Jм в долях от момента инерции двигателя кгм2 Тип двигателя и способ его питания 2 2000 70 Постоянного тока от генератора постоянного тока Примечание: Характер момента сопротивления реактивный. Требуемую перегрузочную способность двигателя. Средняя температура нагрева изоляции двигателя не должна превышать допустимую.4 Предварительная мощность двигателя рассчитывается по нагрузочной диаграмме и тахограмме рабочей машины.
43080. Возможности и преимущества Microsoft Powerpoint 2010 8.77 MB
  Когда-то слово “презентация” ассоциировалось с кипой бумаг и множеством маркеров. Сейчас программа Microsoft PowerPoint позволяет создавать презентации на компьютере и демонстрировать их в виде слайд-шоу. Приложение PowerPoint входит в состав пакета Microsoft Office, представляющего собой набор программных продуктов для создания документов, электронных таблиц и презентаций, а также для работы с электронной почтой.