19965

Решение задачи о поле температуры в облучательном устройстве при отсутствии утечек тепла в торцы

Лекция

Физика

Поставить и решить вспомогательную задачу Б и закончить рассмотрение задачи о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обосновать необходимость использования метода конечных элементов (МКЭ) для расчета полей температуры в облучаемых образцах. Приступить к постановке задачи расчета поля температуры МКЭ для цилиндрического образца.

Русский

2013-08-13

39.33 KB

0 чел.

Конспект занятия 13.

Цель.

    Поставить и решить вспомогательную задачу Б и закончить рассмотрение задачи о  радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обосновать необходимость использования метода конечных элементов  (МКЭ) для расчета полей температуры в облучаемых образцах. Приступить к постановке задачи расчета поля температуры МКЭ для цилиндрического образца.

План.

1. Постановка и решение вспомогательной задачи Б.

2.Решение задачи о поле  температуры в облучательном устройстве при отсутствии утечек тепла в торцы.      

3. Постановка задачи расчета поля температуры МКЭ для цилиндрического образца.

   Поле температуры в образце (задача Б)

    На поверхности цилиндра с коэффициентом теплопроводности λ0,1   задана температура Т1   , внутри цилиндра действуют внутренние источники тепла qv01 , в центре цилиндра температура имеет экстремум.

Граничные условия:

 dT/dr | r= 0                                                                                           (19)

T | r= R1= Т1                                                                                          (20)

    Поле температуры описывается уравнением (13) и (14).

Из (19)  C1 = 0, тогда  из (20) определяем:

С2 = Т1+ qv,0,1 R21/4 λ0,1

Поле температуры в цилиндре (образце) имеет вид:

Рис.3.7 Модель расчета поля температуры при отсутствии утечек тепла в торцы.

λk.k+1

Rk

Rn

3

1

2

K

K+1

K+2

K+3

n-1

n

qv01v01

qv23

λ23

qvk.k+1

Q

α.Tcp

T=T(r)

Qk

λk,k+1

qvk,k+1

Rk

Tk

Tk+1

А

dT/dr|r=0=0

T=T(r)

λ01

qv01

R1

T1

Б

Т=Т1+ qv,0,1 (R21-r2)/4 λк, к+1

Поток тепла с поверхности цилиндра:

Qk = - 2π λ0,1  R1 dT/dr | r= R1 = πqv,0,1R21 = πqv,0,1(R21 R20),

где R0 = 0

Определяем потоки тепла, пользуясь результатами задач, рассмотренных выше:

        n

Qn = Σ πqv,k,k+1(R2k+1 R2k) при R0 = 0.

       k=0

     Используя краевое условие (6), имеем:

Tn -Tc = Qn/2 παRn

     Определяем перепады температуры:

- на оболочке

Тn-1 - Тn = Av,n-1,n+ An-1,n ,

- в газовой прослойке:

Tn -Tc = Qn-2,n-1 /hn-2,n-1

- на к-ом экране:

Тk - Тk+1 = Av,k,k+1+ Ak,k+1 ,

- в к-1 прослойке:

Тk-1 - Тk = Qk-1,k /hk-1,k

-в экране с радиусами R2 и  R3 :

T2T3 = Av,2,3+ A2,3 ,

- в прослойке с радиусами R1 и  R2:

Т1 - Т2 = Q1,2 /h1,2 ,

- в образце:

Т0 1= qv,0,1 R21/4 λ0,1

    Последовательное суммирование вышеприведенных разностей дает возможность определить поле температуры по радиусу облучательного устройства.

    Исследование свойств материалов в реакторном эксперименте осложняется наличием интенсивных тепловыделений в испытуемом     образце.  Следствием этого являются  градиенты температуры    по объему образца и появление термонапряжений, которые в  ряде случаев могут приводить к растрескиванию образца. Существенными могут оказаться явления, обусловленные   наличием градиента плотности тепловыделения в материале.

    В целом, требования к оценке поведения образца в реакторном эксперименте должны быть более строгими, расчеты температурных полей более подробными и точными.

    Для расчета температурных полей в образце реакторной установки целесообразно воспользоваться методом конечных элементов.

    Постановка задачи.

1.Геометрические условия задают цилиндрический осе симметричный образец.

2.Физические   условия   задают    распределение     источников

тепловыделения  в образце и  коэффициент теплопроводности, зависящий от температуры.

3.Временные условия рассматривают стационарную задачу:

dT/ =0                                                                                          (21)

4.Граничные условия.

На торцевых поверхностях образца предлагается использовать два варианта граничных условий:

- условия первого рода:

T|z=0, 0≤  rR = T (0, r)                                                                         (22)

T|z=H, 0≤  rR = T (H, r)                                                                       (23)

- условия третьего рода:

- λ dT/dr |z=0, 0≤  rR = α (0,r) [T (0, r) – Tc0]                                    (24)

- λ dT/dr |z=H, 0≤  rR = α (H,r) [T (H, r) – TcH]                                (25)

   На внешней боковой поверхности цилиндрического образца задаются граничные условия третьего рода:

Q= 2πRα(z,r) [T (z, r) – Tcr]                                                             (26)

    Решение задачи методом конечных элементов.

    Дискретизация геометрической области проводится по схеме представленной в верхней части рис. 3.8.

    Определение стационарных двумерных полей температуры основано на простейшем варианте метода конечных элементов. Ищется решение стационарного уравнения теплопроводности:

                            

div [ λ(T) grad T( r )] +  qv(r) =0 ,                                                    (27)         

где

Т(r) - температура образца;

λ(Т) - коэффициент теплопроводности в общем случае, зависящий от температуры;

qv(r)- плотность внутренних источников тепла может быть функцией координат.

    Граничные условия, как уже отмечалось, задают либо температуру, либо тепловой поток. В соответствии с методом конечных

элементов и с учетом симметрии задачи цилиндрический образец разбивается на N кольцевых элементов и  М элементов по высоте.  

    Возьмем толщину кольцевых элементов постоянной. Затем для каждого элемента составляется уравнение теплового баланса,  при этом предполагается, что величины λ и qv постоянны для данного элемента.

    В рассматриваемом случае уравнения теплового баланса    элементов принимают вид:

N(i)

Σ γ(i,j)[T(i)-T(j)] + qv(i)S(i)+QL(i) = 0                                           (28)

j=1

где

S(i)- площадь получаемого  при таком разбиении элемента;

Т(i)- температура элемента;

qv(i) плотность внутренних источников тепла;

QL(i)- поток тепла в элемент из внешней среды;

γ( i,j)- коэффициент, характеризующий перенос тепла между соседними i-ым и j -ым элементами;

N(i)- число элементов, обменивающихся теплом с элементом, равно четырем во внутренней области и трем для элементов, лежащих на границе области.

При составлении системы уравнений (28) предполагалось, что потоки тепла Q между соседними элементами пропорциональны разности температур в этих элементах:

Q = γ( i,j) [T(i)-T(j)]                                                                          (29)

    Выражение, определяющее  γ( i,j)  , может быть получено при рассмотрении  соотношения для потока тепла между   i-ым  и  j -ым  элементами в радиальном направлении:

Q = λ Lij grad T  | ij                                                                            (30)

где λ - коэффициент теплопроводности материала;   L- протяженность границы между элементами; grad T  | ij - градиент температуры на границе между   i-ым и  j -ым элементами.

H 

r

z

r 

Рис. 3.8

0

0

0

0

0

0

0

0

M*N

Рис.3.8. Схема расположения конечных элементов и структура матрицы [B].


 

А также другие работы, которые могут Вас заинтересовать

7296. Відносини власності. Тенденції розвитку відносин власності в Україні 540.5 KB
  Відносини власності План лекції Власність як економічна категорія. Структура власності, її типи, види і форми. Власність на засоби виробництва. Тенденції розвитку відносин власності в Україні. На самостійне опрацювання...
7297. Психологічні особливості підліткового віку 104 KB
  Психологічні особливості підліткового віку Загальна характеристика ситуації та особливостей розвитку підлітків Стосунки з однолітками та дорослими Розвиток пізнавальних процесів Формування особистості підлітка ЗАГАЛЬНА ХАРАК...
7298. Основи правового регулювання працевлаштування і зайнятості населення 141 KB
  Основи правового регулювання працевлаштування і зайнятості населення. Поняття зайнятості населення. Правове регулювання працевлаштування громадян України Вирішення соціальних та економічних проблем, які в сучасних умовах стоять перед Україною, з...
7299. Ділова зустріч. Умови ефективної ділової зустрічі 68 KB
  Тема: Ділова зустріч План Характеристика ділової зустрічі. Протокол ділової зустрічі. Умови ефективної ділової зустрічі. Щоб ефективно провести ділову зустріч, до неї потрібно серйозно підготуватись, продумавши все до дрібниць. Про...
7300. Мікроекономічна модель підприємства. виробнича функція 165.5 KB
  Мікроекономічна модель підприємства. виробнича функція План: Підприємство як виробнича система. Фактори виробництва та їх класифікація. Поняття i параметри виробничої функції Виробництво - це процес використання ресурсів для виготовлення ...
7301. Оздоровлення повітряного середовища 49 KB
  Оздоровлення повітряного середовища Метеорологічні умови в робочій зоні приміщень Робоча зона - це простір висотою 2 м над рівнем робочої поверхні. Метеоумови в робочій зоні приміщення визначаються ГОСТ 12.1.005-88 Общие санитарно-гигиенические...
7302. Технологія приготування напівфабрикатів для тортів та тістечок 77 KB
  Технологія приготування напівфабрикатів для тортів та тістечок Бісквітне тісто Бісквіт Буше Бісквіт основний Бісквіт з наповнювачем Бісквіт для рулету Вихід готової продукції. Види браку бісквітних напівф...
7303. Основні поняття організаційного бизнес-моделювання. Місія компанії, дерево цілей і стратегії їх досягнення 239 KB
  Тема: Основні поняття організаційного бизнес-моделювання. Місія компанії, дерево цілей і стратегії їх досягнення. План: Статичний опис компанії: бізнес-потенціал компанії, функціонал компанії, зони відповідальності менеджменту. Динамічни...
7304. Основи генетики людини. Методи вивчення спадковості. Біологоія індивідуального розвитку. Молекулярно-генетичні механізми онтогенезу. Патологічні порушення онтогенезу людини. 44.5 KB
  Тема: Основи генетики людини. Методи вивчення спадковості. Біологоія індивідуального розвитку. Молекулярно-генетичні механізми онтогенезу. Патологічні порушення онтогенезу людини. План Генетика людини. Сучасні методи генетичних дослі...