19965

Решение задачи о поле температуры в облучательном устройстве при отсутствии утечек тепла в торцы

Лекция

Физика

Поставить и решить вспомогательную задачу Б и закончить рассмотрение задачи о радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обосновать необходимость использования метода конечных элементов (МКЭ) для расчета полей температуры в облучаемых образцах. Приступить к постановке задачи расчета поля температуры МКЭ для цилиндрического образца.

Русский

2013-08-13

39.33 KB

0 чел.

Конспект занятия 13.

Цель.

    Поставить и решить вспомогательную задачу Б и закончить рассмотрение задачи о  радиальном распределении температуры в облучательном устройстве при отсутствии утечек тепла в торцы. Обосновать необходимость использования метода конечных элементов  (МКЭ) для расчета полей температуры в облучаемых образцах. Приступить к постановке задачи расчета поля температуры МКЭ для цилиндрического образца.

План.

1. Постановка и решение вспомогательной задачи Б.

2.Решение задачи о поле  температуры в облучательном устройстве при отсутствии утечек тепла в торцы.      

3. Постановка задачи расчета поля температуры МКЭ для цилиндрического образца.

   Поле температуры в образце (задача Б)

    На поверхности цилиндра с коэффициентом теплопроводности λ0,1   задана температура Т1   , внутри цилиндра действуют внутренние источники тепла qv01 , в центре цилиндра температура имеет экстремум.

Граничные условия:

 dT/dr | r= 0                                                                                           (19)

T | r= R1= Т1                                                                                          (20)

    Поле температуры описывается уравнением (13) и (14).

Из (19)  C1 = 0, тогда  из (20) определяем:

С2 = Т1+ qv,0,1 R21/4 λ0,1

Поле температуры в цилиндре (образце) имеет вид:

Рис.3.7 Модель расчета поля температуры при отсутствии утечек тепла в торцы.

λk.k+1

Rk

Rn

3

1

2

K

K+1

K+2

K+3

n-1

n

qv01v01

qv23

λ23

qvk.k+1

Q

α.Tcp

T=T(r)

Qk

λk,k+1

qvk,k+1

Rk

Tk

Tk+1

А

dT/dr|r=0=0

T=T(r)

λ01

qv01

R1

T1

Б

Т=Т1+ qv,0,1 (R21-r2)/4 λк, к+1

Поток тепла с поверхности цилиндра:

Qk = - 2π λ0,1  R1 dT/dr | r= R1 = πqv,0,1R21 = πqv,0,1(R21 R20),

где R0 = 0

Определяем потоки тепла, пользуясь результатами задач, рассмотренных выше:

        n

Qn = Σ πqv,k,k+1(R2k+1 R2k) при R0 = 0.

       k=0

     Используя краевое условие (6), имеем:

Tn -Tc = Qn/2 παRn

     Определяем перепады температуры:

- на оболочке

Тn-1 - Тn = Av,n-1,n+ An-1,n ,

- в газовой прослойке:

Tn -Tc = Qn-2,n-1 /hn-2,n-1

- на к-ом экране:

Тk - Тk+1 = Av,k,k+1+ Ak,k+1 ,

- в к-1 прослойке:

Тk-1 - Тk = Qk-1,k /hk-1,k

-в экране с радиусами R2 и  R3 :

T2T3 = Av,2,3+ A2,3 ,

- в прослойке с радиусами R1 и  R2:

Т1 - Т2 = Q1,2 /h1,2 ,

- в образце:

Т0 1= qv,0,1 R21/4 λ0,1

    Последовательное суммирование вышеприведенных разностей дает возможность определить поле температуры по радиусу облучательного устройства.

    Исследование свойств материалов в реакторном эксперименте осложняется наличием интенсивных тепловыделений в испытуемом     образце.  Следствием этого являются  градиенты температуры    по объему образца и появление термонапряжений, которые в  ряде случаев могут приводить к растрескиванию образца. Существенными могут оказаться явления, обусловленные   наличием градиента плотности тепловыделения в материале.

    В целом, требования к оценке поведения образца в реакторном эксперименте должны быть более строгими, расчеты температурных полей более подробными и точными.

    Для расчета температурных полей в образце реакторной установки целесообразно воспользоваться методом конечных элементов.

    Постановка задачи.

1.Геометрические условия задают цилиндрический осе симметричный образец.

2.Физические   условия   задают    распределение     источников

тепловыделения  в образце и  коэффициент теплопроводности, зависящий от температуры.

3.Временные условия рассматривают стационарную задачу:

dT/ =0                                                                                          (21)

4.Граничные условия.

На торцевых поверхностях образца предлагается использовать два варианта граничных условий:

- условия первого рода:

T|z=0, 0≤  rR = T (0, r)                                                                         (22)

T|z=H, 0≤  rR = T (H, r)                                                                       (23)

- условия третьего рода:

- λ dT/dr |z=0, 0≤  rR = α (0,r) [T (0, r) – Tc0]                                    (24)

- λ dT/dr |z=H, 0≤  rR = α (H,r) [T (H, r) – TcH]                                (25)

   На внешней боковой поверхности цилиндрического образца задаются граничные условия третьего рода:

Q= 2πRα(z,r) [T (z, r) – Tcr]                                                             (26)

    Решение задачи методом конечных элементов.

    Дискретизация геометрической области проводится по схеме представленной в верхней части рис. 3.8.

    Определение стационарных двумерных полей температуры основано на простейшем варианте метода конечных элементов. Ищется решение стационарного уравнения теплопроводности:

                            

div [ λ(T) grad T( r )] +  qv(r) =0 ,                                                    (27)         

где

Т(r) - температура образца;

λ(Т) - коэффициент теплопроводности в общем случае, зависящий от температуры;

qv(r)- плотность внутренних источников тепла может быть функцией координат.

    Граничные условия, как уже отмечалось, задают либо температуру, либо тепловой поток. В соответствии с методом конечных

элементов и с учетом симметрии задачи цилиндрический образец разбивается на N кольцевых элементов и  М элементов по высоте.  

    Возьмем толщину кольцевых элементов постоянной. Затем для каждого элемента составляется уравнение теплового баланса,  при этом предполагается, что величины λ и qv постоянны для данного элемента.

    В рассматриваемом случае уравнения теплового баланса    элементов принимают вид:

N(i)

Σ γ(i,j)[T(i)-T(j)] + qv(i)S(i)+QL(i) = 0                                           (28)

j=1

где

S(i)- площадь получаемого  при таком разбиении элемента;

Т(i)- температура элемента;

qv(i) плотность внутренних источников тепла;

QL(i)- поток тепла в элемент из внешней среды;

γ( i,j)- коэффициент, характеризующий перенос тепла между соседними i-ым и j -ым элементами;

N(i)- число элементов, обменивающихся теплом с элементом, равно четырем во внутренней области и трем для элементов, лежащих на границе области.

При составлении системы уравнений (28) предполагалось, что потоки тепла Q между соседними элементами пропорциональны разности температур в этих элементах:

Q = γ( i,j) [T(i)-T(j)]                                                                          (29)

    Выражение, определяющее  γ( i,j)  , может быть получено при рассмотрении  соотношения для потока тепла между   i-ым  и  j -ым  элементами в радиальном направлении:

Q = λ Lij grad T  | ij                                                                            (30)

где λ - коэффициент теплопроводности материала;   L- протяженность границы между элементами; grad T  | ij - градиент температуры на границе между   i-ым и  j -ым элементами.

H 

r

z

r 

Рис. 3.8

0

0

0

0

0

0

0

0

M*N

Рис.3.8. Схема расположения конечных элементов и структура матрицы [B].


 

А также другие работы, которые могут Вас заинтересовать

44705. Особенности библиотеки (Library Features) 2.13 MB
  Создание Библиотеки Шрифта Creting Font Librry Особенность текста входящая в РМ использует сделанные образцы шрифта. Они специализированы в схемы библиотек куда каждый символ номер символ шрифта нарисованный в одной ячейке библиотеки. Название ячейки для каждой ячейки образца шрифта фактический символ шрифта который ячейка представляет. Рисуйте все символы числа символы для вашего шрифта.
44706. Панели инструментов Pattern Makera 853 KB
  Панель Min Главная 1 создать новый файл схемы 2 импорт графического файла в новый файл схемы 3 открыть файл схемы 4 сохранить текущий файл 5 печать 6 вырезать выделенный фрагмент в буфер обмена 7 копировать выделенный фрагмент в буфер обмена 8 вставить фрагмент из буфера обмена на текущую схему 9 отменить действие 10 вставить схему из галереи 11 вызвать справку Панель View Вид 1 отобразить схему в виде крестиков 2 отобразить схему в виде символов 3 отобразить схему в виде цветных квадратов 4 показать...
44707. Работа программы PM для вышивки крестом 2.61 MB
  Основные Особенности РМ позволяет Вам создавать схемы которые включают следующий стежок напечатает: Полный крест Полукрест Четверть Миниатюрный Назад Прямо бэкстич Специальный Французский Узел Цепочка ячеек До 240 цветов мулине вышивального шелка может использоваться при содействии дизайна. Эта особенность удобна когда Вы хотите использовать нарисованный эскиз как схему {руководство} для вашего дизайна. После создания дизайна РМ позволяет Вам создавать размещение страницы для...
44708. Преобразование сканированной Фотографии 3.65 MB
  Чтобы открыть Мастера Импортирования выберите Import Imge и затем Импортируйте В Новую схему из меню File или щелкните кнопкой панели Import Imge. Чтобы развернуть экран щелкните кнопкой Mximum которая расположена в верхнем правом угле главного окна Pttern Mker. Щелкните Browse чтобы выбрать файл. Щелкните Open после вашего выбора.
44709. Использование Обеспеченного Графического элемента 2.46 MB
  Выберите New от меню File. Выберите Sve от меню File чтобы сохранить ваш дизайн. Выберите Copy в Библиотеке в меню Librry или щелкните соответствующей кнопкой панели. Выберите Sve от меню File чтобы сохранить ваш дизайн.
44710. Особенности Стежка 508 KB
  Выберите цвет мулине который используется для стежка. Нажмите на инструмент Полный Миниатюрный Половина или стежка Четверти Панели рисования: 3. Чтобы использовать только первую нарисованную ориентацию стежка выберите Repet First Stitch Orienttion в меню Stitch.
44711. Диалог Вариантов стежка 510 KB
  Фактическая Толщина Страница Фактической толщины диалогового окна Stitch Options позволяет Вам определять заданную по умолчанию толщину для каждого типа стежка. Определите заданную по умолчанию толщину стежка для каждого типа стежка. Толщина Дисплея Страница Толщины Дисплея диалогового окна Stitch Options позволяет Вам определять дисплей и напечатанную толщину для каждой возможной толщины стежка.
44712. Сужение Выбора Цвета и Типа Стежка 1.3 MB
  Установите указатель в пределах выбора и затем щелкните и удержите левую кнопку мыши. Они: Точечный рисунок Эта опция копирует растровое представление выбора в буфер обмена. Используйте инструмент выбора чтобы сделать выбор.
44713. Особенности Ткани 397 KB
  Характеристики ткани которыми Вы можете управлять включают размер стежка цвет и полный размер. Параметры настройки ткани для образца редактируются используя диалог Свойств Ткани Fbric Properties. Этот диалог содержит множественные страницы для того чтобы определить различные варианты ткани.