19966

Методика представления системы уравнений тепловых балансов в матричной форме

Лекция

Физика

Познакомить слушателей с методикой представлением системы уравнений тепловых балансов в матричной форме. Отметить, что это представление основывается на предположениях о малых размерах элементов, геометрии рассматриваемой задачи и возможности использования линейных связей между тепловыми потоками и температурой.

Русский

2013-08-13

30.08 KB

2 чел.

Конспект занятия 14.

Цель.

   Познакомить слушателей с  методикой представлением системы уравнений тепловых балансов в матричной форме. Отметить, что это представление основывается на предположениях о малых размерах элементов, геометрии рассматриваемой задачи и возможности использования линейных связей между тепловыми потоками и температурой. Рассмотреть матричную форму системы уравнений и представить программу расчета полей температуры методом конечных элементов. Использовать полученные результаты для расчета температурных перепадов в облучаемом образце ядерного топлива из диоксида урана.

План.

1. Методика представления системы уравнений тепловых балансов в матричной форме.

2. Матричная форма системы уравнений тепловых балансов.

3. Программа расчетов на ЭВМ.

4. Пример расчетов температурных перепадов в облучаемом образце из диоксида урана.

         В случае, когда рассматриваемые элементы имеют достаточно малые размеры, температурный   градиент в радиальном направлении можно линейным образом аппроксимировать разностью температур элементов T(i) и Т(j):

Q = [T(i)-T(j)] Lij / [(∆ri/2λi)+ (∆rj/2λj)]                                         (31)

где Lij - протяженность границы между i-ым и  j-ым элементами; ∆ri, ∆rj - линейные размеры  i-ым и  j-ым элементов;  λi , λj  - коэффициенты теплопроводности i-ым и  j-ым элементов.

    Сравнивая (29),(30) и (31), находим выражение для γ( i,j)    в радиальном направлении:

γr(i,j)=Lij[(∆ri/2λi)+(∆rj/2λj)]-1                                                       (32)

Аналогичным образом получим выражения для теплового потока
в аксиальном направлении:

Q = [T(i)-T(j)] Lij / [(∆zi/2λi)+ (∆zj/2λj)]                                          (33)

и соответственно для γz( i,j) в аксиальном направлении:

γz( i,j) = Lij [(∆zi/2λi)+ (∆zj/2λj)]-1                                                      (34)

где  ∆zi и ∆zj  высоты i-ого и  j-ого элементов.

Необходимо отметить, что при выводе соотношения (33) и (34) использовалось условие ортогональности потоков тепла и границ между элементами. Данное условие выполняется для рассматриваемой задачи вследствие симметрии при принятом разбиении на элементы.

Для элементов на боковой поверхности при граничном условии третьего рода имеем:

γr( i,с) = Liс [(∆ri/2λi)+ (1/αс)]-1                                                          (35)

a при граничном условии первого рода:

γr( i,с) = Liсi / ∆ri                                                                            (36)

где αс - коэффициент теплоотдачи;  Lic - протяженность границы  элемента  cо средой.

    Система уравнений (28) может быть представлена в матричной форме:

[B]{T} = { Qv }+{Q L}

где  

[В]  - пятидиагональная симметричная матрица,  определяющая взаимодействие элементов между собой;  

{T}   - вектор температуры элементов;  

{Qv} - вектор источников   тепла;

{Q L} - вектор потоков тепла c границ цилиндрического образца.

    Матрица [В]  является квадратной пятидиагональной матрицей размера (М*N ).  Структура  ее представлена    на рис.3.8 где сплошными линиями показаны ненулевые элементы.

    В соответствии с переходом от (28) к (37)  элементы матрицы    [B] определяются следующим образом. Элементы, лежащие на неглавных диагоналях, определяются согласно (32) и (34). Элементы лежащие на главной диагонали,  определяются  как сумма элементов неглавных диагоналей, взятых с обратным знаком и лежащих  на одной cтроке, минус член,  определяющий тепловое

взаимодействие c внешней средой, в случае, когда элемент лежит  на внешней поверхности.

    Для определения вектора температуры элементов получим решение в виде:

{T} =  ({ Qv }+{Q L}) [B]-1

     Основные этапы проведения расчетов на ЭВМ.

    Пpoгpaмма определения двухмерных полей температуры реализует следующую последовательность действий (рис.21).

   Во вводной части программы задается зависимость коэффициента теплопроводности от температуры, начальное приближение для λ  , рассчитываются матрица [В], {Qv } и {QL} . Далее для реализации треугольного разложения cимметричной матрицы  [В] применяется подпрограмма " CHODET ". Подпрограмма "SHOSOL "  по известному вектору правой части уравнения (37) определяет вектор температуры.

    После получения поля температуры  происходит его дальнейшее уточнение итерациями с учетом зависимости коэффициента теплопроводности образца от температуры. Укрупненная блок- схема программы определения вектора температуры для
цилиндрических образцов представлена на рис.3.9.

    Пример расчета температурного поля.  

    На рис.3.10. показана зависимость максимального радиального перепада температуры в образце из диоксида урана от плотности внутренних источников тепла при различных значениях температур окружающей среды и торцов. На боковой поверхности образца задавались граничные условия третьего рода, а на торцах - первого рода при этом предполагалось, что температура на торце образца по его сечению постоянна.  Это условие приближает расчеты к ситуации, реализуемой в экспериментальной установке, когда ядерное топливо с низким коэффициентом теплопроводности контактирует с металлическим пуансоном.

    Коэффициент теплоотдачи с боковой поверхности образца учитывал теплопроводность  через газ-заполнитель, конвекцию  и тепловое излучение и рассчитывался по методике, принятой для расчета поля температуры но элементам установки.         

    При  тепловыделениях  ~ 60 Вт/см3 , характерных для эксплуатации установок типа "Крип-ВТ" (высокотемпературные испытания)  на ИРТ-МИФИ, перепады составляют величины  ~ 30 К, что не может привести к разрушению образца из-за термонапряжений.

0

0

0

0

0

0

0

0

M*N

Ввод  данных

ITER=1

T=T0

Формирование матрицы [B]и свободных векторов.

Приведение матрицы [B]

к треугольному виду.

CHODET

Определение {T}

CHOSOL

T0-T<EPS

ITER<ITER M

Конец

Т0

ITER=ITER+1

Рис. 3.9.Блок-схема программы для определения поля температуры в образце.

Да

Да

Нет

Нет

H 

r

z

r 

Рис.3.8. Схема расположения конечных элементов и структура матрицы [B].

   0                 40                80              120        qv     Вт/см3

Тторц=1200К

Тср=1000К

Тторц=1600К

Тср=1400К

Тторц=1100К

Тср=1100К

Тторц=700К

Тср=700К

Тторц=300К

Тср=300К

Рис.3.10.Зависимость радиального перепада температуры от плотности тепловыделений в UO2.

0R) К

80

70

60

50

40

30

20

10


 

А также другие работы, которые могут Вас заинтересовать

44774. Проблемы имплементации международно-правовых стандартов по запрещению рабства и принудительного труда в РФ 313.5 KB
  Предмет исследования составляют нормы, содержащиеся в международно-правовых актах в сфере предупреждения и запрещения рабства и принудительного труда (международные конвенции, декларации и рекомендации), а также нормы российского законодательства в указанной области.
44775. Анализ ассортимента и оценка качества чайных товаров на ООО «Чайный дом» 221 KB
  Следует отметить, что от выпуска высококачественной продукции выигрывает и национальная экономика, поскольку в этом случае увеличиваются экспортный потенциал и доходная часть платежного баланса страны, повышается авторитет государства в мировом сообществе.
44776. Анализ ассортимента, потребительских свойств и экспертиза качества товаров, реализуемых торговым предприятием на примере мучных кондитерских изделий 241 KB
  Отрасль продолжает сохранять большую привлекательность для иностранных вложений, поскольку, по оценкам иностранных аналитиков, российский кондитерский рынок сохраняет потенциальные возможности для дальнейшего расширения, при условии сохранения относительной стабильности в экономике страны в целом.
44777. Применение форм 7.9 MB
  Применение форм Цели работы: научиться создавать формы ввода-вывода; научиться создавать кнопочные формы. Перейдите на закладку Формы выделите форму Список и нажмите клавишу [Delete]. С помощью автоформы можно просматривать или вводить данные. Порядок работы: В окне базы данных выберите вкладку Формы.
44779. Создание и использование запросов (продолжение) 2.09 MB
  Предположим, прошел год, студенты перешли на следующий курс, изменились их личные данные, некоторые закончили колледж, пришли новые. Нужно обновить базу данных
44780. Создание отчетов 2.44 MB
  Рассмотрим ситуацию, когда стандартный отчет нас не устраивает. Например, вы хотите сконструировать стандартную справку об обучении и выдавать ее по запросу. Сначала следует создать запрос с параметром Справка (рис. 42), в котором будут только интересующие вас записи, затем следует приступить к созданию отчета
44781. Создание отчетов (продолжение) 2.07 MB
  Цели работы: закрепить навыки создания отчетов с помощью Конструктора; научиться создавать отчеты с помощью Мастера отчетов; освоить основные приемы изготовления надписей на конвертах и наклейках. Создайте с помощью Конструктора отчет Списки учеников. Порядок работы: Откройте закладку Отчеты если находитесь в другом окне. В появившемся диалоговом окне Новый отчет выберите режим Конструктор и таблицу Список в качестве источника данных.
44782. Обучающие работы по созданию и ведению баз данных 2.61 MB
  Система управления базами данных предоставляет значительные возможности по работе с хранящимися данными, их обработке и совместному использованию. Можно выбирать любые поля, форматы полей, сортировать данные, вычислять итоговые значения. Можно отбирать интересующие данные по какому-либо признаку, менять их, удалять, копировать в другие таблицы