19966

Методика представления системы уравнений тепловых балансов в матричной форме

Лекция

Физика

Познакомить слушателей с методикой представлением системы уравнений тепловых балансов в матричной форме. Отметить, что это представление основывается на предположениях о малых размерах элементов, геометрии рассматриваемой задачи и возможности использования линейных связей между тепловыми потоками и температурой.

Русский

2013-08-13

30.08 KB

2 чел.

Конспект занятия 14.

Цель.

   Познакомить слушателей с  методикой представлением системы уравнений тепловых балансов в матричной форме. Отметить, что это представление основывается на предположениях о малых размерах элементов, геометрии рассматриваемой задачи и возможности использования линейных связей между тепловыми потоками и температурой. Рассмотреть матричную форму системы уравнений и представить программу расчета полей температуры методом конечных элементов. Использовать полученные результаты для расчета температурных перепадов в облучаемом образце ядерного топлива из диоксида урана.

План.

1. Методика представления системы уравнений тепловых балансов в матричной форме.

2. Матричная форма системы уравнений тепловых балансов.

3. Программа расчетов на ЭВМ.

4. Пример расчетов температурных перепадов в облучаемом образце из диоксида урана.

         В случае, когда рассматриваемые элементы имеют достаточно малые размеры, температурный   градиент в радиальном направлении можно линейным образом аппроксимировать разностью температур элементов T(i) и Т(j):

Q = [T(i)-T(j)] Lij / [(∆ri/2λi)+ (∆rj/2λj)]                                         (31)

где Lij - протяженность границы между i-ым и  j-ым элементами; ∆ri, ∆rj - линейные размеры  i-ым и  j-ым элементов;  λi , λj  - коэффициенты теплопроводности i-ым и  j-ым элементов.

    Сравнивая (29),(30) и (31), находим выражение для γ( i,j)    в радиальном направлении:

γr(i,j)=Lij[(∆ri/2λi)+(∆rj/2λj)]-1                                                       (32)

Аналогичным образом получим выражения для теплового потока
в аксиальном направлении:

Q = [T(i)-T(j)] Lij / [(∆zi/2λi)+ (∆zj/2λj)]                                          (33)

и соответственно для γz( i,j) в аксиальном направлении:

γz( i,j) = Lij [(∆zi/2λi)+ (∆zj/2λj)]-1                                                      (34)

где  ∆zi и ∆zj  высоты i-ого и  j-ого элементов.

Необходимо отметить, что при выводе соотношения (33) и (34) использовалось условие ортогональности потоков тепла и границ между элементами. Данное условие выполняется для рассматриваемой задачи вследствие симметрии при принятом разбиении на элементы.

Для элементов на боковой поверхности при граничном условии третьего рода имеем:

γr( i,с) = Liс [(∆ri/2λi)+ (1/αс)]-1                                                          (35)

a при граничном условии первого рода:

γr( i,с) = Liсi / ∆ri                                                                            (36)

где αс - коэффициент теплоотдачи;  Lic - протяженность границы  элемента  cо средой.

    Система уравнений (28) может быть представлена в матричной форме:

[B]{T} = { Qv }+{Q L}

где  

[В]  - пятидиагональная симметричная матрица,  определяющая взаимодействие элементов между собой;  

{T}   - вектор температуры элементов;  

{Qv} - вектор источников   тепла;

{Q L} - вектор потоков тепла c границ цилиндрического образца.

    Матрица [В]  является квадратной пятидиагональной матрицей размера (М*N ).  Структура  ее представлена    на рис.3.8 где сплошными линиями показаны ненулевые элементы.

    В соответствии с переходом от (28) к (37)  элементы матрицы    [B] определяются следующим образом. Элементы, лежащие на неглавных диагоналях, определяются согласно (32) и (34). Элементы лежащие на главной диагонали,  определяются  как сумма элементов неглавных диагоналей, взятых с обратным знаком и лежащих  на одной cтроке, минус член,  определяющий тепловое

взаимодействие c внешней средой, в случае, когда элемент лежит  на внешней поверхности.

    Для определения вектора температуры элементов получим решение в виде:

{T} =  ({ Qv }+{Q L}) [B]-1

     Основные этапы проведения расчетов на ЭВМ.

    Пpoгpaмма определения двухмерных полей температуры реализует следующую последовательность действий (рис.21).

   Во вводной части программы задается зависимость коэффициента теплопроводности от температуры, начальное приближение для λ  , рассчитываются матрица [В], {Qv } и {QL} . Далее для реализации треугольного разложения cимметричной матрицы  [В] применяется подпрограмма " CHODET ". Подпрограмма "SHOSOL "  по известному вектору правой части уравнения (37) определяет вектор температуры.

    После получения поля температуры  происходит его дальнейшее уточнение итерациями с учетом зависимости коэффициента теплопроводности образца от температуры. Укрупненная блок- схема программы определения вектора температуры для
цилиндрических образцов представлена на рис.3.9.

    Пример расчета температурного поля.  

    На рис.3.10. показана зависимость максимального радиального перепада температуры в образце из диоксида урана от плотности внутренних источников тепла при различных значениях температур окружающей среды и торцов. На боковой поверхности образца задавались граничные условия третьего рода, а на торцах - первого рода при этом предполагалось, что температура на торце образца по его сечению постоянна.  Это условие приближает расчеты к ситуации, реализуемой в экспериментальной установке, когда ядерное топливо с низким коэффициентом теплопроводности контактирует с металлическим пуансоном.

    Коэффициент теплоотдачи с боковой поверхности образца учитывал теплопроводность  через газ-заполнитель, конвекцию  и тепловое излучение и рассчитывался по методике, принятой для расчета поля температуры но элементам установки.         

    При  тепловыделениях  ~ 60 Вт/см3 , характерных для эксплуатации установок типа "Крип-ВТ" (высокотемпературные испытания)  на ИРТ-МИФИ, перепады составляют величины  ~ 30 К, что не может привести к разрушению образца из-за термонапряжений.

0

0

0

0

0

0

0

0

M*N

Ввод  данных

ITER=1

T=T0

Формирование матрицы [B]и свободных векторов.

Приведение матрицы [B]

к треугольному виду.

CHODET

Определение {T}

CHOSOL

T0-T<EPS

ITER<ITER M

Конец

Т0

ITER=ITER+1

Рис. 3.9.Блок-схема программы для определения поля температуры в образце.

Да

Да

Нет

Нет

H 

r

z

r 

Рис.3.8. Схема расположения конечных элементов и структура матрицы [B].

   0                 40                80              120        qv     Вт/см3

Тторц=1200К

Тср=1000К

Тторц=1600К

Тср=1400К

Тторц=1100К

Тср=1100К

Тторц=700К

Тср=700К

Тторц=300К

Тср=300К

Рис.3.10.Зависимость радиального перепада температуры от плотности тепловыделений в UO2.

0R) К

80

70

60

50

40

30

20

10


 

А также другие работы, которые могут Вас заинтересовать

49731. Проектирование «АРМ менеджера «Издательской компании «Лада» и разработка отдельных его компонентов 257.5 KB
  Это какая продукция какой тираж какие работы должны быть выполнены какие материалы будут использованы при выполнении обговорить ориентировочную стоимость заказа. Таблица Вспомогательные материалы: хранит информацию о дополнительных материалах используемых на производстве например фольга пленка для ламинирования клей декстрин. Таблица Переплетные материалы: хранит информацию о переплетных материалах используемых в производстве например бумвинил эфолин. Таблица Поставки: является связующей между таблицами Бумага Вспомогательные...
49735. Системы водоснабжения и водоотведения жилого здания 1.87 MB
  Здание включает в себя 4 этажа, а также неэксплуатируемый подвал, в котором расположен магистральный трубопровод. Наружные стены выполнены из пеноблока и имеют толщину 600 мм. Внутренние несущие стены выполнены из пеноблока и составляют толщину 380 мм. Перегородки выполнены из кирпича толщиной 120 мм.
49737. Устройство предварительной обработки аналогового сигнала 1.09 MB
  Разработка структурной схемы устройства. Описание структурной схемы устройства. Разработка функциональной схемы устройства. Описание работы устройства по временным диаграммам.
49738. Малоэтажный жилой дом в г. Мурманск 397.32 KB
  Массовая жилая застройка последнего десятилетия в городах различной крупности страдает однообразием не только изза схожести внешнего облика типовых зданий но и одинаковой этажности. Лист № докум. Подпись Дата Лист 4 Введение согласно градостроительным нормам проектирования 5этажной застройки 5300 для центральных 5200 для северных и 5600 для южных районов страны.