19968

Причины создания реакторного стенда для исследования свойств ядерного топлива при динамическом воздействии реакторного излучения

Лекция

Физика

Рассмотреть причины создания реакторного стенда для исследования свойств ядерного топлива при динамическом воздействии реакторного излучения. Познакомить слушателей с реакторным стендом ИРТ-МИФИ для исследования физико-механических свойств ядерного топлива и комплексом задач решаемых на стенде

Русский

2013-08-13

27.46 KB

0 чел.

Конспект занятия 16.

Цель.

   Рассмотреть причины создания реакторного стенда для исследования свойств ядерного топлива при динамическом воздействии реакторного излучения. Познакомить слушателей с реакторным стендом ИРТ-МИФИ для исследования  физико-механических свойств ядерного топлива и комплексом задач решаемых на стенде.    Рассмотреть схему измерений стенда. Обратить внимание на возможность проведения комплексных исследований нескольких свойств на одном образце.

План.

1. Причины создания реакторного стенда для исследования свойств ядерного топлива при динамическом воздействии реакторного излучения.

2. Реакторным стендом ИРТ-МИФИ для исследования физико-механических свойств ядерного топлива.

3. Схема измерений стенда.

4. Комплексное исследование ряда свойств на одном образце.

В конце шестидесятых годов при разработке твэлов для реакторов на быстрых нейтронах остро встали проблемы изучения выхода газообразных продуктов деления и механического взаимодействия распухающего топлива и оболочки (ВТО), ограничивающих  достижение экономически приемлемых выгораний. Несколько позднее, в связи с повышением параметров эксплуатации и увеличением кампании, это стало актуальным и для твэлов ВВЭР. Напряжения на оболочке при ВТО в стационарных условиях эксплуатации определяются ползучестью, а в переходных – комплексом механических свойств топлива, деформируемого в режимах с постоянной скоростью и релаксации напряжений. В начале восьмидесятых годов из- за участившихся случаев  потери устойчивости оболочек твэлов водо-водяных реакторов, причиной которого стало увеличение зазора, возникла необходимость изучения размерных изменений сердечника при облучении вследствие радиационного доспекания топлива. Примерно в такой же хронологии развивались работы по созданию реакторного стенда для исследования перечисленных выше свойств оксидного ядерного топлива.

Под реакторным стендом понимается комплекс экспериментальных установок, включающих в себя исследовательский ядерный реактор. В нашем случае комплекс экспериментальных установок приспособлен для проведения активных реакторных испытаний и аналогичных экспериментальных исследований вне поля  реакторного излучения.    

Облучательные устройства,  разработанные на кафедре18 МИФИ и внедренные в практику НИР на ИРТ-МИФИ, использованы как прототипы  при создании реакторных стендов на реакторах ВВР-СМ (Узбекистан г.Улукбек) и ИВВ-2 (Свердловская обл.

г. Заречный) .

Экспериментальные возможности ИРТ-МИФИ позволили впервые провести исследование механических свойств топлива,  влияния на газовыделение  пластической деформации диоксида урана при высоких температурах, исследовать динамику радиационной аморфизации силицида урана и её влияние на пластические свойства, обосновать разработку оксидного топлива с низким сопротивлением деформированию, получить рекомендации для обоснования работоспособности и лицензирования твэлов энергетических реакторов.    

Возможности стенда в основном ограничены максимальными и минимальными значениями температуры, при которых надёжно работают конкретные облучательные устройства. Этот температурный интервал составляет 50 – 2000 0С. Экспериментальные возможности стенда рассмотрены на обобщенной схеме рис.1, где представлены основные параметры, регистрируемые измерительными системами стенда.

Объект исследования – образец (2) размещается в облучательном устройстве (1) в потоке газа-носителя (8). Образовавшиеся в результате взаимодействия объекта исследования с излучением газообразные (летучие) продукты деления (ГПД) транспортируются к внешним системам стенда, которые методами γ – спектрометрии способны определить их концентрацию в потоке (13). Естественно, что параметры самого потока (массовый расход, геометрия трактов и др.) так же фиксируются в эксперименте. Частный случай представляют устройства, где газ-носитель не движется (устройство заполнено газом) или газ-носитель отсутствует (устройство вакуумировано).

Поток излучения (3) может определяться мониторированием, если эксперимент предполагается вести при стационарной мощности реактора, или непрерывно регистрироваться первичными датчиками потока излучения в случае, если программа эксперимента предусматривает нестационарные режимы облучения объекта испытаний.

Содержание

ГПД в газе

13

Поток газа

носителя

7

Электрический

ток

8

Нагреватель

9

1

Разность

потенциалов

10

Текущее

время

эксперимента

12

Акустическая

эмиссия

11

Потоки

излучений

3

Температура

4

Деформация

5

Механическая

нагрузка

6

2

Рис.1. Схема измерений.

Реакторный стенд        1

Реактор ИРТ-МИФИ        2

Система измерения физических величин             3

Информационно-

измерительная система          4

Система обеспечения

эксперимента      5

Время испытаний:

- таймер ЭВМ

-развертка самописца

-частотомер    7

Акустическая эмиссия (АЭ) :

- АЭ регистратор с амплитудным и частотным анализатором.

- система связи с ЭВМ.        8

Электрофизические свойства, термопары, тензорезисторы:

-самопишущие  мосты и потенциометры

- цифровые ампервольтметры

- связь с ЭВМ.                        9

Механическая нагрузка (УЗ колебания), давление газа-носителя (заполнителя):

- нагружающая система- манометры

-расходомеры,перепадометры.         10

Поток излучения, концентрация ГПД :

- термонейтронные датчики.

- γ- мониторы и спектрометры с полупроводниковым датчиком и амплитудным анализатором.   11

Деформация: преобразователь индуктивный, радиационнотермостойкий (ПИРТ) со спецблоком и аналоговой и цифровой записью.                    12 

Обработка

экспери-метальных

резуль-татов  6

Температура испытаний:

- нагрев: собственные тепловыделения, нагреватель.

- охлаждение: теплоноситель

реактора, газ-заполнитель, вакуум.                            20

Среда испытаний:

- система очистки газа-насителя (заполнителя)

- система вакуумирования  21

Транспортные операции:

-смена образца,

- смена установки.       22

Экспериментальные установки 13

Лабораторные

установки   14

Облучательные

устройства    15

Специальные 16

Аналоги 17

Со сменой

образца 18

Без смены образца 19

Рис. 2. Взаимосвязи систем и устройства реакторного стенда.

Измерение температуры (4) объекта испытаний является обязательной при проведении активных реакторных испытаний.

Реализация позиций (3,4,12,13) в соответствующем облучательном устройстве и его системах измерения и обеспечения эксперимента позволяет исследовать одну из важнейших характеристик ядерного топлива- выход газообразных продуктов деления в процессе облучения [17].

Рассмотрим системы, содержащие  следующие комбинации позиций схемы: (3,4,5,12) и (3,4,5,7,12,13). Первая комбинация предполагает изучение размерной нестабильности объекта испытаний под воздействием излучения и температуры [18]. Эта характеристика крайне необходима при разработке элементов активных зон ядерных энергетических установок. Размерной нестабильностью под воздействием излучения помимо ядерного топлива обладают значительно более широкий класс материалов, эта характеристика важна и для них.

Вторая комбинация позиций представляет значительный интерес при исследовании топливных композиций. Изучение в одном эксперименте размерной нестабильности и газовыделения позволяет оценить вклад газового распухания в процессе размерной нестабильности, понять физику изучаемого процесса.

Сочетание позиций (3,4,5,6,12) и (3,4,5,6,7,12,13) позволяет определять механические свойства испытуемого образца. В первом случае в процессе облучения исследуются характеристики ползучести, пределы пропорциональности, текучести, напряжение течения, характеристики релаксации напряжений [19]. Во втором случае появляется возможность дополнить изучение механических свойств , определение их влияния на процесс газовыделения [20].

Анализ сигналов акустической эмиссии в сочетании позиций (3,4,5,6,7,11,12,13) позволяет определять радиационный коэффициент диффузии кислорода в диоксиде урана [21], внутренние напряжения в облучаемом образце [22] и температуру хрупко-пластического перехода в диоксиде урана [23]. В этих исследованиях появление сигналов дискретной акустической эмиссии является указателем (индикатором) смены механизмов поведения микро- и макродефектов в испытуемом образце при внешних воздействиях. Можно предположить, что более глубокий амплитудный и частотный анализ акустической эмиссии во времени позволит исследовать и другие явления.

В целом, представленные выше возможности реакторного стенда, по-видимому, не исчерпаны. В таб. 3 представлены характеристики устройств стенда.

В восьмидесятые годы прошлого века на ИРТ-МИФИ  выполнялась программа сотрудничества с Францией по исследованию пластических свойств ядерного топлива в радиационных условиях. Эксперименты по исследованию высокотемпературной ползучести в инициативном плане сопровождались регистрацией газов-продуктов деления (ГПД). На образцах технологии DCI, обладающих повышенной пластичностью и низкими значениями выходов ГПД, были получены нетривиальные  результаты. При малых установившихся скоростях деформации ползучести выход ГПД  был ниже стационарного выхода при отсутствии деформации и превышал его при больших скоростях.

№№

пп

Наименование

установки

Измеряемые характеристики

Температурный

интервал

Облучательные устройства

1

Каприз

Пластические свойства при сжатии,

выход ГПД.

Менее 2300 К

2

Ритм

Пластические свойства при сжатии,

акустическая эмиссия.

Менее 2300 К

3

Сатурн

Пластические свойства при сжатии

в нестационарных условиях.

Менее 2300 К

4

Крип

Пластические свойства при сжатии.

Менее 2300 К

5

Циклон

Пластические свойства при реверсивном изгибе.

Менее 2300 К

6

Раст

Пластические свойства при сжатии.

Менее 1300 К

7

Пост

Формоизменение при облучении.

Менее 1300 К

8

Пост-Урал

. Формоизменение при облучении

Менее 1300 К

9

Раст-Урал

Пластические свойства при сжатии.

Менее 1300 К

Лабораторные аналоги облучательных устройств.

10

Плутон

Пластические свойства при сжатии,

смешанное топливо.

Менее 2300 К

11

Крип

Пластические свойства при сжатии.

Менее 2300 К

Лабораторные установки.

12

ИС (испытатель-ный стенд)

Пластические свойства и акустическая эмиссия

при реверсивном изгибе.

Менее 1800 К

Таб. 3


 

А также другие работы, которые могут Вас заинтересовать

70107. Автоматизация проектирования схем, содержащих триггеры и счётчики 2.15 MB
  Используя программу Electronics Workbench собрать схему для исследования асинхронного RSтриггера с инверсными входами базис ИНЕ на каждом входе поставить контакт реле составить полную таблицу истинности работы триггера.
70108. Многотабличные запросы 127.5 KB
  В секции FROM указывается источник данных – таблица или итоговый набор. Секция может содержать несколько источников, разделенных запятыми. Результат подобного перечисления функционально эквивалентен перекрестному объединению.
70109. Подготовка к установке OC Windows XP в среде VirtualBox 69.5 KB
  Анализ аппаратного обеспечения ПК Определите и запишите основные технические характеристики и конфигурацию вашего ПК в виде: Тип модель процессора его тактовая частота объем кеша Тип материнской платы и ёё тактовую частоту Тип оперативной памяти ёё объем и частоту работы...
70111. ОЦЕНКА ЭФФЕКТИВНОСТИ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ 2.17 MB
  Цель работа Оценка эффективности защитного заземления в трехфазной трехпроводной сети с изолированной нейтралью и в трехфазной четырехпроводной сети с заземленной нейтралью напряжением до 1000 В. Оценить эффективность защитного заземления в трехфазной...
70112. Визначення моменту інерції тіла за періодом крутильних коливань 64 KB
  Моментом інерції матеріальної точки відносно осі обертання називається добутком маси цієї точки на квадрат відстані від осі. Моментом інерції системи (тіла) відносно осі обертання називається фізична величина, яка дорівнює сумі добутків мас n матеріальних точок на квадрати їх відстаней до даної осі...
70113. Канали з розширення спектру (DSSS, FHSS) 585.94 KB
  Приклад моделі розширення спектру однополярними сигналами з амплітудою 1 операція XOR Коди Уолша. Графік автокореляційної функції Виконати розширення спектру перемноженням двох полярних сигналів даних та коду Уолшаприклад Wlsh.
70114. ОЗНАЙОМЛЕННЯ З КОЛОРИТОМ І ТЕХНІКОЮ ВИКОНАННЯ ВИШИВОК, ВИКОРИСТАННЯ ЇХ У ПОБУТІ ТА ОДЯЗІ. РОБОТИ НАРОДНИХ МАЙСТРІВ 68 KB
  Використання домотканого полотна що має перпендикулярне переплетення ниток обумовлювало і загальний характер полтавської вишивки геометричні або геометризовані орнаментальні форми вирішені великими рельєфними масами.
70115. Текстовий процесор Microsoft Word. Робота з таблицями, графічними зображеннями та редактором формул 1010 KB
  Мета роботи:Ознайомитись з основними поняттями та принципами роботи з текстовим процесором Microsoft Word. Навчитись налаштовувати робоче середовище процесора, форматувати текст, працювати з графічними зображеннями, таблицями та підпрограмою Microsoft Equation.