20041

Опоры вращения с трением качения. Опоры с малым моментом трения

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Опоры с малым моментом трения. Опоры на ножах Опора состоит из ножа 1 контактирующего с подшипником – подушкой 2. В любом варианте опоры этого типа представляют собой контакт двух цилиндрических поверхностей максимальный угол поворота 10 момент трения минимальный. Опоры на кернах Опора на керне состоит из цапфы конической формы на конце которой выполнена сферическая полированная поверхность радиусом 01 – 015 мм и подшипника с вогнутой сферической поверхностью с радиусом =4 – 12 .

Русский

2013-07-25

1.29 MB

14 чел.

Опоры вращения с трением качения. Опоры с малым моментом трения.

Опоры на ножах

Опора состоит из ножа 1, контактирующего с подшипником – подушкой 2. Рабочая поверхность ножа представляет собой цилиндрический сегмент радиуса . Используются ножи с грушевидным (1), треугольным (2), прямоугольным (3) и пятиугольным (4) профилями поперечного сечения. Выбор профиля определяется необходимой точностью и нагрузками, действующими на такую опору.

Форма подушки может быть с плоской (1), призматической (2), цилиндрической (3) рабочими поверхностями.

Плоская подушка имеет минимальный момент трения, но требует дополнительных устройств центрирования. Наиболее распространены призматические подушки (2), обеспечивающие требуемый момент трения качения и необходимое центрирование. В любом варианте опоры этого типа представляют собой контакт двух цилиндрических поверхностей, максимальный угол поворота 10, момент трения минимальный. Расчёт производится на контактную прочность и на момент трения. В качестве материалов применяются инструментальные стали или минералы.

Примеры конструкций:

Нож может запрессовываться в несущую конструкцию (рис. 1) или устанавливаться в ней посредством крепления. Второй вариант предпочтительнее, так как при трёхточечном креплении положение ножа может быть отрегулировано с весьма высокой точностью. Для установки подушки также может быть применена посадка с натягом или механические крепёжные элементы.

Опоры на кернах

Опора на керне состоит из цапфы конической формы, на конце которой выполнена сферическая полированная поверхность радиусом (0,1 – 0,15 мм) и подшипника с вогнутой сферической поверхностью с радиусом =(4 – 12) .

Контакт керна и подшипника точечный и поэтому такие опоры имеют малый момент трения. Их используют на малых частотах вращения и небольших нагрузках. Могут использоваться при любом пространственном положении вала. В любом случае требуется зазор между рабочими поверхностями для температурной компенсации. А поэтому точность центрирования невысока. Керны и подшипники стандартизованы ГОСТ 8898 – 92. В большинстве случаев керны выполняются из углеродистых сталей, а подшипники из минералов или специальных видов стёкол. Расчёт производится на момент трения и контактную прочность.

Сферические опоры

Сферические опоры обеспечивают поворот вала относительно трёх взаимно перпендикулярных осей. Их используют в случае, когда в процессе эксплуатации или регулировки подвижная система прибора кроме вращения должна поворачиваться относительно опорного узла. Цапфа вала выполнена в виде сферы с диаметром . А подшипник имеет коническую рабочую поверхность с углом ( обычно 120). Из–за малого радиуса пояска контакта момент трения мал и весьма стабилен. Точность центрирования до 10 мкм. Опора работоспособна на малых частотах вращения и небольших нагрузках. Такие опоры могут работать в любом пространственном положении. Цапфа может выполняться со сферической законцовкой или может содержать дополнительный вставной шарик. Подшипник выполняется из бронзы, иногда из керамики и минералов. В качестве материала цапфы используется хромистая сталь ШХ10, ШХ15 или углеродистые стали.

Опоры на центрах

В опорах этого типа подшипник обычно выполняют с цилиндрическим отверстием, имеющим коническую зенковку с углом =90, а цапфу вала конической формы с углом =60. При этом диаметр отверстия d обычно не превышает 1,5-2 мм. Момент трения мал, опоры имеют низкую чувствительность к перекосам и изменениям температуры. Опоры устанавливают с двух сторон вала, они могут воспринимать радиальную и осевую нагрузку. Применяются на низких частотах вращения, при малых нагрузках из-за больших контактных напряжений на рабочих поверхностях. Износостойкость, как правило, невысока. При изготовлении используются материалы, не подверженные коррозии, для цапф применяются хромистые и углеродистые стали с твёрдостью до , для подшипников – фосфористую бронзу или латунь.

Смазка в опорах этого типа служит в качестве защитной среды, так как на рабочих поверхностях из-за большого давления она, как правило, не удерживается.

Расчёт производится на контактную прочность и момент трения.

Достижимая точность центрирования 1 – 1, 5 мкм.


 

А также другие работы, которые могут Вас заинтересовать

15253. Анализ системы статистических данных 41.5 KB
  Лабораторная работа 4 Анализ системы статистических данных Цель работы Изучение информационных ресурсов сайта Федеральной службы государственной статистики. Учебное задание На сайте www.gks.ru в разделе Официальная статистическая информация найдите группу показ
15254. СВОБОДНОЕ И ВЫНУЖДЕННОЕ ДВИЖЕНИЕ ЛИНЕЙНЫХ СИСТЕМ 414 KB
  Лабораторная работа №5 СВОБОДНОЕ И ВЫНУЖДЕННОЕ ДВИЖЕНИЕ ЛИНЕЙНЫХ СИСТЕМ Цель работы. Исследование динамических свойств линейных систем второго порядка. Рассмотрим систему второго порядка Переменные состояния рассматриваемой системы могут быть определ...
15255. Информационная деятельность менеджера в Интернете 646 KB
  Меняев М.Ф. Информационные ресурсы в менеджменте Часть 2: Информационная деятельность менеджера в Интернете Методические указания Общие сведения о глобальной сети Интернет. Internet предоставляет доступ к набору информационных служб сервисов основными среди кот
15256. Анализ влияния нулей и полюсов передаточной функции на динамические свойства системы 228.5 KB
  Лабораторная работа №6 Анализ влияния нулей и полюсов передаточной функции на динамические свойства системы по курсу Теория управления вариант 1 Цель работы: исследование связи переходной функции и динамических свойств системы с размещением на комплексной...
15257. Анализ точности систем управления 180.61 KB
  Лабораторная работа №7 Анализ точности систем управления Вариант №1 Цель работы. Исследование точностных свойств систем управления. 1. Исследование системы с астатизмом нулевого порядка. Задана замкнутая система с регулятором и передаточной функцией разомкну...
15258. Преобразование координат из одной зоны в другую путем непосредственного перехода от прямоугольных координат к прямоугольным 22.26 KB
  Лабораторная работа № 12 Преобразование координат из одной зоны в другую путем непосредственного перехода от прямоугольных координат к прямоугольным. Этот способ проще первого и требует значительно меньше вычислительного труда но для его применения необходимы зара
15259. Решение сферических треугольников 140.82 KB
  Лабораторная работа № 13 Решение сферических треугольников. Решение малых сферических и сфероидических треугольников. Треугольники триангуляции являются сфероидическими или эллипоидальными треугольниками поскольку они образованы на поверхности эллипсоида. Так ...
15260. Вычисление сближения меридианов 17.6 KB
  Лабораторная работа № 8 Вычисление сближения меридианов Сближение меридианов используется при переходе от азимута геодезической линии к дирекционному углу её изображения на плоскости по формуле: α=А
15261. ПРЕОБРАЗОВАНИЕ КООРДИНАТ ИЗ ОДНОЙ ЗОНЫ В ДРУГУЮ С УЧЕТОМ ПОПРАВКИ ПОВОРОТА ОСЕЙ 594.67 KB
  Лабораторная работа № 9 ПРЕОБРАЗОВАНИЕ КООРДИНАТ ИЗ ОДНОЙ ЗОНЫ В ДРУГУЮ С УЧЕТОМ ПОПРАВКИ ПОВОРОТА ОСЕЙ. Необходимость преобразования координат. Способы преобразования координат. На практике нередко возникает задача перевычисления преобразования координат из од