20070

Структурные схемы приборов. Схема с последовательным соединением звеньев. Чувствительность. Погрешность

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Структурной схемой называют схему содержащую предельно упрощенное обозначение функциональных узлов прибора или устройства а также логические связи этих узлов друг с другом. При эксплуатации прибора на его вход воздействует информативный параметр х измеряемая величина а также неинформативные параметры g1 g2 gn. При прохождении сигнала по компонентам прибора на подсистемы подузлы прибора воздействуют внутренние дестабилизирующие факторы q1 q2 qm которые так или иначе влияют на работоспособность этих узлов а следовательно и на...

Русский

2013-07-25

253.5 KB

8 чел.

Структурные схемы приборов. Схема с последовательным соединением звеньев. Чувствительность. Погрешность.

Структурной схемой называют схему, содержащую предельно упрощенное обозначение функциональных узлов прибора или устройства, а также логические связи этих узлов друг с другом.

Структурная схема в общем виде.

При эксплуатации прибора на его вход воздействует информативный параметр х (измеряемая величина), а также неинформативные параметры g1, g2, …, gn. При прохождении сигнала по компонентам прибора на подсистемы (подузлы) прибора воздействуют внутренние дестабилизирующие факторы q1, q2, …, qm, которые так или иначе влияют на работоспособность этих узлов, а следовательно, и на выходной сигнал у. Т.о. структурная схема в общем виде позволяет оценить условия процесса измерения и возможные проблемы при работе прибора при эксплуатации.

Различают:

1) последовательную схему

2) параллельную схему

3) смешанную (комбинированную) схему

При создании прибора необходимо стремиться к тому, чтобы его структурная схема содержала наименьшее количество элементов и связей. Однако усложнение схемы приводит к созданию прибора с лучшими метрологическими характеристиками.

Последовательная схема соединения звеньев.

Это схема, при которой входной величиной каждого последующего преобразователя служит выходная величина предыдущего.

Термоанемометр:

     

           Рис. 1.                      Рис. 2.                                   Рис. 3.

Прибор представляет собой платиновую проволоку 1, установленную на манганиновых стержнях 2, смонтированных в свою очередь на рукоятке 3. кабелем 4 датчик включается в электрическую схему (рис. 2).

В этом приборе можно выделить следующие элементарные преобразователи: 1 – нагретая проволока преобразует изменение скорости потока в изменение температуры; 2 – та же проволока, выполняющая функцию термометра сопротивления, преобразующая изменение температуры в изменение сопротивления; 3 – электрическая цепь изменение температуры в изменение сопротивления; 4 – измерительный прибор преобразует изменение тока в угол поворота стрелки.

Функция преобразования такого прибора представляет собой зависимость угла поворота стрелки φ от скорости потока V.

Функция преобразования первого преобразователя представляет собой зависимость температуры проволоки t от скорости потока V:

  1.  t=f(V)
  2.  R=R0(1+αt)
  3.  I=E/(R+R0)
  4.  φ=Sм·I

R0сопротивление при нуле

α – температурный коэффициент сопротивления

Sм – чувствительность прибора

Функцию преобразования всего прибора получают подставляя последовательно функции преобразования элементарных преобразователей 3, 2, 1 в выражение 4.

Полученная зависимость связывает угол поворота стрелки прибора со скоростью воздушного потока и используется при проектировании и моделировании устройства.

Чувствительность схемы с последовательным соединением.

1)

2)

3)

4)

Вывод: чувствительность схемы с последовательным соединением звеньев равна произведению чувствительностей элементарных преобразователей, входящих в состав прибора.

Применение схемы с последовательным соединением звеньев позволяет корректировать статическую характеристику всего прибора, изменяя статические характеристики отдельных входящих в него звеньев.

Если в составе прибора существует преобразователь с затухающей характеристикой 1, то для получения линейной зависимости выходного сигнала от входного всего прибора можно ввести в структурную схему преобразователь с прогрессивной характеристикой 2 с такой же степенью изменения чувствительности по модулю. Тогда суммарная характеристика двух этих звеньев будет линейной.

Построение статической характеристики на развернутых осях.

В каждом квадранте координатной плоскости строятся характеристики звеньев, входящих в состав прибора. Решая графически последовательно функции преобразования отдельных преобразователей, в четвертом квадранте получают статическую характеристику всего прибора. Если число звеньев в составе прибора больше 3-х, то сначала строится суммарная характеристика первых трех преобразователей, а затем, используя эту характеристику как характеристику одного звена, следующих трех.

По средствам этого метода можно получить также характеристику корректирующего звена при необходимости получения определенных свойств всего прибора.

Погрешность схемы с последовательным соединением звеньев.

Каждый входящий в состав прибора преобразователь имеет погрешность. Поэтому его выходная величина может быть представлена в виде:

,

где ун – часть выходного сигнала, определяемая входной величиной и номинальной функцией преобразования, т.е. это выходной сигнал идеального преобразователя.

Следовательно, выходная величина преобразователя 1 может быть представлена в виде:

Т.к. преобразователи соединены последовательно, то сигнал погрешности  будет воздействовать на преобразователь 2 точно также, как и входной сигнал.

Вывод: при последовательном соединение звеньев погрешность прибора равна сумме погрешностей входящих в состав прибора преобразователей, приведенных к выходу.

К преимуществам схемы относится простота, к недостаткам – довольно большая погрешность.


 

А также другие работы, которые могут Вас заинтересовать

2958. Техническая эксплуатация кирпичных стен гражданских зданий 71.5 KB
  Техническая эксплуатация кирпичных стен гражданских зданий. Эксплуатационные качества наружных и внутренних стен, факторы и причины, влияющие на них. Оценка технического состояния стен при эксплуатации. Причины контроля за деформациями в системах зд...
2959. Система воздушных сигналов 916 KB
  Система воздушных сигналов. НАЗНАЧЕНИЕ СИСТЕМ ВОЗДУШНЫХ СИГНАЛОВ Одним из важнейших параметров полета летательного аппарата (ЛА) является его скорость. В основу принципа действия современных бортовых средств измерения параметров движения летательн...
2960. Причины, вызывающие необходимость реконструкции зданий 34.5 KB
  Причины, вызывающие необходимость реконструкции зданий. Нормативные требования, предъявляемые к зданию, и их соблюдение при реконструкции. Основные конструктивные мероприятия, выполняемые при реконструкции зданий. При реконструкции отдельного здания...
2961. Техническая эксплуатация перекрытий зданий 70.5 KB
  Техническая эксплуатация перекрытий зданий. Эксплуатационные качества междуэтажных, чердачных и других видов перекрытий. Факторы и причины влияющие на них. Оценка технического состояния перекрытий. Обеспечение несущих и ограждающих функций крыш в процессе эксплуатации.
2962. Ограждающие конструкции с применением древесины 454.5 KB
  Ограждающие конструкции с применением древесины Деревянные и светопрозрачные настилы. Прогоны. Сборные ограждающие конструкции с использованием древесины. Основные положения расчета клеефанерных плит покрытия. Настилы являются несущими элементами ог...
2963. Магнитные датчики и приборы курсовых систем 623 KB
  Магнитные датчики и приборы курсовых систем  Общие сведения о курсе летательного аппарата Магнитное поле Земли  Магнитные компасы Девиации и погрешности магнитных компасов Индукционные компасы Контрольные вопросы Общие ...
2964. Крыши, покрытия и эксплуатационные требования к ним 117.5 KB
  Крыши, покрытия и эксплуатационные требования к ним По своему назначению любая крыша должна удовлетворять ряду важных эксплуатационных требований, так как ее состояние сказывается на техническом состоянии и эксплуатационных качествах нижележащих...
2965. Определение плотности твердого тела 171.02 KB
  Цель работы – определение плотности твердого тела и освоение методов определения погрешностей измерений и их расчёта. Задание: - определить плотность твердого тела. Оценить погрешность проведенных измерений.
2966. Курсовые системы ЛА 749 KB
  Курсовые системы ЛА. Состав курсовых систем. Гироскопические приборы, их погрешности и математическая модель. Гироскопические датчики. Математическая модель гироскопического датчика. Авиагоризонты. Центральные гировертикали...