20101

Делительные устройства приспособлений. Назначение и область применения, особенности конструкций. Расчет погрешности деления

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Простейшее делительное устройство состоит из диска закрепленного на поворотной части приспособления неподвижной части корпуса и фиксатора. Количество делений или позиций определяется количеством отверстий подвижной части приспособления. δ допуск на расстояние между осями 2х соседних отверстий подвижной части. 1й случай S1=0 S2 ≠ 0: В фиксаторе сопряжение рабочей части и втулки по посадке Н7 g6 для высокоточных Н6 h5.

Русский

2013-07-25

59.5 KB

106 чел.

Делительные устройства приспособлений. Назначение и область применения, особенности конструкций. Расчет погрешности деления.

Их применяют в многопозиционных приспособлениях для придания обрабатываемой заготовке различных положений относительно инструмента. Простейшее делительное устройство состоит из диска, закрепленного на поворотной части приспособления, неподвижной части (корпуса) и фиксатора. Фиксаторы обычно представляют собой стержни различной формы, которые монтируются на корпусе приспособления. В процессе обработки стержень находится в одном из отверстий, предусмотренных поворотной частью и жестко фиксируют её относительно корпуса. Перед делениями фиксатор выводится из отверстия, поворотная часть переводится в другое положение, после чего осуществляется последующая фиксация. Количество делений или позиций определяется количеством отверстий подвижной части приспособления. Управление фиксаторами осуществляется в ручную или автоматически. Фиксаторы выполняются с цилиндрической, призматической или конической рабочей частью, кроме того, используются и шариковые фиксаторы, однако, они не обеспечивают точного деления и не воспринимают моментов сил резания.

Схемы фиксации.

  1.  подвижная поворотная часть.
  2.  корпус (неподвижная).
  3.  фиксатор
  4.  пружина

5, 6 втулки.

Погрешность деления определяется по формуле:

Δ= S1+ S2+ +A

S1- зазор между фиксатором и втулкой, запрессованной в подвижную часть.

S2- зазор между фиксатором и направляющей втулкой, которая находится в корпусе.

δ – допуск на расстояние между осями 2-х соседних отверстий подвижной части.

А – эксцентриситет втулок.

1-й случай S1=0 S2 ≠ 0: В фиксаторе сопряжение рабочей части и втулки по посадке Н7/g6 для высокоточных Н6/h5. Уменьшаются деления за счет регулировки зазора. Угол конической или призматической части α=15 градусов.

Управление фиксаторами простейших приспособлений осуществляется вытяжной кнопкой, рукояткой с использованием зубчатой передачи или посредством педали.

Кроме простых фиксаторов используются относительно сложные делительные механизмы, типа делительных головок с механизмом мальтийского креста, с использованием храповых, кулачковых, червячных и реечных механизмов. Они имеют механический, гидравлический или пневматический привод. В точных делительных устройствах фиксаторы разгружают, что повышает их срок службы и подвижную поворотную часть приспособления прижимают к неподвижной специальными устройствами повышая тем самым жесткость системы, особенно это важно для фрезерных приспособлений, испытывающих большие нагрузки. Для этой цели используют эксцентриковые валики, применяют установку фиксирующего и зажимного механизма или фиксирующего и подъемного механизма. Блокирующие механизмы приводят в действие одной рукояткой. В приспособлении для обработки тяжелых заготовок поворотная часть вращается с помощью различных приводов: электро-, пневмо-, гидродвигателей. Поэтому для гашения больших инерционных моментов в конце деления такие делительные устройства снабжены тормозными устройствами, сблокированными системой привода и фиксатора. Т.о. делительные устройства достаточно сложны по конструкции. Они включают: поворотные механизмы с приводом, делительные устройства с фиксатором, прижимы, тормозы и системы автоматического управления рабочим циклом. К этим механизмам предъявляются высокие требования по технологичности, безотказности, долговечности и быстродействию в работе.


 

А также другие работы, которые могут Вас заинтересовать

19107. Математические модели сигналов 288.5 KB
  Лекция № 3. Математические модели сигналов. Сигнал процесс изменения во времени физического состояния какогото объекта служащий для отображения регистрации и передачи сообщений. Сигналы электрические акустические оптические и т.д. Классификация сигналов. Сиг...
19108. Спектральные характеристики непериодических сигналов 191.5 KB
  Лекция № 4. Спектральные характеристики непериодических сигналов. Теория спектрального представления непериодических импульсных сигналов основанная на прямом и обратном интегральных преобразованиях Фурье позволяет осуществлять анализ прохождения сигналов чер
19109. Спектральный анализ непериодических сигналов 246 KB
  Лекция № 5. Спектральный анализ непериодических сигналов Для практических приложений является важным установление связи между преобразованием сигнала и соответствующим этому преобразованию изменением спектральных характеристик. Спектральная плотность сигнала...
19110. Физические измерительные системы и их математические модели 243.5 KB
  Лекция № 6. Физические измерительные системы и их математические модели Динамические измерительные системы в которых связи между измеряемыми величинами входными сигналами и выходными сигналами описываются дифференциальными уравнениями разнообразны по принци
19111. Динамические характеристики измерительных систем 245 KB
  Лекция № 7. Динамические характеристики измерительных систем Импульсная характеристика системы. Импульсной характеристикой стационарной измерительной системы описываемой оператором называют функцию являющуюся откликом системы на входной сигнал в виде функци...
19112. Модуляция сигналов в измерительных системах 185.5 KB
  Лекция № 8. Модуляция сигналов в измерительных системах Информационные преобразования в аналоговых блоках измерительных систем осуществляются над сигналами имеющими различные информативные параметры или другими словами над сигналами с различными видами модуля...
19113. Первичные преобразователи систем измерения физических величин 113.5 KB
  Лекция № 9. Первичные преобразователи систем измерения физических величин Эффективное управление сложными техническими объектами атомные электростанции объекты топливноэнергетического комплекса и пр. автоматизация технологических процессов дальнейшее разви...
19114. Пьезоэлектрические преобразователи 246 KB
  Лекция №10. Пьезоэлектрические преобразователи Пьезопреобразователи электромеханические преобразователи принцип действия которых основан на пьезоэлектрическом эффекте явлении возникновения электрической поляризации под действием механических напряжений. Е
19115. Пьезоэлектрические преобразователи, метод электромеханических аналогий 207.5 KB
  Лекция №11. Пьезоэлектрические преобразователи продолжение Так как пьезоэлектрический преобразователь представляет собой электроакустическую систему в которой электрические и механические характеристики взаимосвязаны то используя метод электромеханических ...