20181

Оценка случайных погрешностей

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Изменение погрешности во времени представляет собой нестационарный случайный процесс. Разделение погрешности на систематическую прогрессирующую и случайную составляющие представляет собой попытку описать различные участки частотного спектра этого широкополосного процесса: инфранизкочастотный низкочастотный и высокочастотный. Случайная погрешность составляющая погрешности измерения изменяющаяся случайным образом по знаку и значению в серии повторных измерений одного и того же размера ФВ проведенных с одинаковой тщательностью в...

Русский

2013-07-25

788.5 KB

76 чел.

Оценка случайных погрешностей

  1.  Понятие «погрешность».

Одно из основных понятий  метрологии «погрешность».

Толковый словарь Ожегова это понятие трактует так: «Погрешность-ошибка, промах в расчетах». В метрологии это слово может использоваться либо при  описании «погрешностей результатов измерения1»,  либо -  «погрешностей средств измерения2». Во многом эти два понятия близки друг к другу и классифицируются по одинаковым признакам. Само понятие «погрешность» условились  классифицировать по характеру проявления на случайные, систематические,  прогрессирующие и грубые.

Подобное  деление на составляющие было введено для удобства обработки результатов измерений исходя из характера их проявления. В процессе формирования метрологии было обнаружено, что погрешность не является постоянной величиной. Путем элементарного анализа установлено, что одна ее часть проявляется как постоянная величина, а другая — изменяется непредсказуемо. Эти части назвали систематической и случайной погрешностями.

Изменение погрешности во времени представляет собой нестационарный случайный процесс. Разделение погрешности на систематическую, прогрессирующую и случайную составляющие представляет собой попытку описать различные участки частотного спектра этого широкополосного процесса: инфранизкочастотный, низкочастотный и высокочастотный.

Случайная погрешность — составляющая погрешности измерения, изменяющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же размера ФВ, проведенных с одинаковой тщательностью в одних и тех же условиях. В появлении таких погрешностей (рис. 1) не наблюдается какой-либо закономерности, они обнаруживаются при повторных измерениях одной и той же величины в виде некоторого разброса получаемых результатов. Случайные погрешности неизбежны, неустранимы и всегда присутствуют в результате измерения. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики.

Рис. 1. Изменение случайной погрешности от измерения к измерению

В отличие от систематических случайные погрешности нельзя исключить из результатов измерений путем введения поправки, однако их можно существенно уменьшить путем увеличения числа наблюдений. Поэтому для получения результата, минимально отличающегося от истинного значения измеряемой величины, проводят многократные измерения требуемой величины с последующей математической обработкой экспериментальных данных.

Большое значение имеет изучение случайной погрешности как функции номера наблюдения i или соответствующего ему момента времени ti проведения измерений, т.е.     Δi = Δ(ti). 

Отдельные значения погрешности являются значениями функции Δ(t), следовательно, погрешность измерения есть случайная функция времени. При проведении многократных измерений получается одна реализация такой функции. Именно такая реализация показана на рис. 1. Повтор серии измерений даст нам другую реализацию этой функции, отличающуюся от первой, и т. д.

Погрешность, соответствующая каждому i-му измерению, является сечением случайной функции Δ(t). 

В каждом сечении данной функции можно найти среднее значение, вокруг которого группируются погрешности в различных реализациях. Если через полученные таким образом средние значения провести плавную кривую, то она будет характеризовать общую тенденцию изменения погрешности во времени.

  1.  Принципы оценивания погрешностей

Оценивание погрешностей производится с целью получения объективных данных о точности результата измерения. Погрешность измерения описывается определенной математической моделью, выбор которой обуславливается имеющимися априорными сведениями об источниках погрешности, а также данными, полученными в ходе измерений. С помощью выбранной модели определяются характеристики и параметры погрешности, используемые для количественного выражения тех или иных ее свойств.

Характеристики погрешности принято делить на точечные и интервальные.

К точечным относятся  предел сверху для модуля систематической погрешности и т.п., к интервальным — границы неопределенности результата измерения.

Если эти границы определяются как отвечающие некоторой доверительной вероятности, то они называются доверительными интервалами. Если же минимально возможные в конкретном случае границы погрешности оценивают так, что погрешность, выходящую за них, встретить нельзя, то они называются предельными (безусловными) интервалами.

В основу выбора оценок погрешностей положен ряд принципов.

  •  Во-первых, оцениваются отдельные характеристики и параметры выбранной модели погрешности.  

Это связано с тем, что модели погрешностей, как правило, сложны и описываются многими параметрами. Определение их всех весьма затруднительно, а иногда и невозможно. Кроме этого, в большинстве практических случаев полное описание модели погрешности содержит избыточную информацию, в то время как знание отдельных ее характеристик вполне достаточно для достижения цели измерения.

  •  Во-вторых, оценки погрешности определяют приближенно, с точностью, согласованной с целью измерения.

Это обусловлено тем, что погрешности определяют лишь зону неопределенности результата измерения и их не требуется знать очень точно.

  •  В-третьих, погрешности оцениваются сверху, поэтому погрешность лучше преувеличить, чем преуменьшить, так как в первом случае снижается качество измерении, а во втором — возможно полное обесценивание результатов всего измерения.
  •  В-четвертых, поскольку стремятся получить реалистические значения оценки погрешности результата измерения, т.е. не слишком завышенные и не слишком заниженные, точность измерений должна соответствовать цели измерения.

Излишняя точность ведет к неоправданному расходу средств и времени. Недостаточная точность в зависимости от цели измерения может привести к признанию годным в действительности негодного изделия, к принятию ошибочного решения и т. п.

  1.  Виды оценивания погрешностей.

  1.  Использование функций распределения.

Присутствие случайных погрешностей в результатах измерений легко обнаруживается из-за их разброса относительно некоторого значения. C известными оговорками, результат измерения и его погрешность могут рассматриваться как случайные величины.

Из теории вероятности известно, что наиболее универсальным способом описания случайных величин является отыскание их интегральных или дифференциальных функций распределения.

Интегральной функцией распределения F(х) называют функцию, каждое значение которой для каждого х является вероятностью события, заключающегося в том, что случайная величина хi {-∞ < хi ≤ +∞} в i-м опыте принимает значение,    меньше х:

F(х) = Р{хi < х} = P{-∞ < хi ≤ х}. (1)

График интегральной функции распределения показан на рис 2. Она имеет следующие свойства:

• неотрицательная, т.е. F(х)≥0;

• неубывающая, т.е. F(х2)≥ F(х1), если х2 ≥ х1;

• диапазон ее изменения простирается от 0 до 1, т.е. F(-∞) = 0; F(+∞) = 1;

• вероятность нахождения случайной величины х в диапазоне от х1, до х2 Р{х1 < х < х2} = F(х2)- F(х1).

Более наглядным является описание свойств результатов измерений и случайных погрешностей с помощью дифференциальной функции распределения, иначе называемой плотностью распределения вероятностей р(х)=dF(х)/dx. Она всегда неотрицательна и подчиняется условию нормирования в виде:

Учитывая взаимосвязь F(х) и р(х), легко показать, что вероятность попадания случайной величины в заданный интервал (х1; х2)

Следовательно, рассмотренное выше условие нормирования означает, что вероятность попадания величины х в интервал [-∞; +∞] равна единице, т.е. представляет собой достоверное событие.

Из последнего уравнения следует, что вероятность попадания случайной величины х в заданный интервал (х12) равна площади, заключенной под кривой р(х) между абсциссами х1 и х2, (см. рис. 2). Поэтому по форме кривой плотности вероятности р(х) можно судить о том, какие значения случайной величины х наиболее вероятны, а какие наименее.

Результирующая погрешность зачастую складывается из ряда составляющих с различными плотностями распределения р1(х), р2,(х),..., рn(х).

В связи с этим возникает задача определения суммарного закона распределения погрешности.

Для суммы независимых непрерывных случайных величин х1, и х2, имеющих распределения р11) и р2(x2), он называется композицией и выражается интегралами свертки :

Z =  x1 (+) x2 

  1.  Использование специальных параметров.

Функции распределения являются самым универсальным способом описания поведения результатов измерений (и случайных погрешностей). Однако для их определения необходимо проведение весьма длительных и кропотливых исследований и вычислений.

В большинстве случаев бывает достаточно охарактеризовать случайные величины с помощью ограниченного числа специальных параметров, основными из которых  являются:

центр распределения;

начальные и центральные моменты и производные от них коэффициенты — математическое ожидание (МО), среднее квадратическое отклонение (СКО), эксцесс, контрэксцесс и коэффициент асимметрии;

энтропийный коэффициент.

  1.  Понятие центра распределения

Координата центра распределения показывает положение случайной величины на числовой оси и может быть найдена несколькими способами. Наиболее фундаментальным является центр симметрии, т.е. нахождение такой точки Хм на оси х, слева и справа от которой вероятности появления различных значений случайной величины одинаковы и равны 0,5:

Точку Хм называют медианой или 50%-ным квантилем. Для ее нахождения у распределения случайной величины должен существовать только нулевой начальный момент.

Можно определить центр распределения как центр тяжести распределения, т.е. такой точки X , относительно которой опрокидывающий момент геометрической фигуры, огибающей которой является кривая р(х), равен нулю:

Эта точка (Х = М) называется математическим ожиданием. Следует отметить, что у некоторых распределений (например, распределения Коши) не существует МО, так как определяющий их интеграл расходится.

При симметричной кривой р(х) в качестве центра может использоваться абсцисса моды, т.е. максимума распределения Хм. Однако существуют распределения, у которых нет моды (например, равномерное). Распределения с одним максимумом называются одномодальными, с двумя — двухмодальными и т.д.

Те, у которых в средней части расположен не максимум, а минимум, называются антимодальными.

Для двухмодальных распределений применяется оценка центра в виде центра сгибов:

Xc=(xc1+xc2)/2

где хс1, хc2 — сгибы, т.е. абсциссы точек, в которых распределение достигает своих максимумов.

Для ограниченных распределений (равномерного, трапецеидального, арксинусоидального и др.) применяется оценка в виде центра размаха:

Xp=(x1+x2)/2

где х1, х2, — первый и последний члены вариационного ряда, соответствующего распределению.

  1.  Моменты распределений

Все моменты представляют собой некоторые средние значения, причем если усредняются величины, отсчитываемые от начала координат, то моменты называют начальными, а если от центра распределения, то центральными.

Начальные и центральные моменты r - порядка определяются соответственно по формулам

Нулевой  начальный  момент равен  единице. Он  используется для задания условия нормирования плотности распределения:

Первый начальный моментматематическое ожидание (МО) случайной величины:

Для результатов измерений МО представляет собой оценку истинного значения измеряемой величины.

Начальные и центральные моменты случайной погрешности совпадают между собой и с центральными моментами результатов измерений:

αr [∆] = μr [∆] = μr [x],

поскольку МО случайной погрешности равно нулю.

Следует отметить, что первый центральный момент тождественно равен нулю.

Важное  значение имеет второй центральный момент

называемый дисперсией и являющийся характеристикой рассеивания случайной величины относительного МО.

Значительно чаще в качестве меры рассеивания используется среднее квадратическое отклонение (СКО)

имеющее такую же размерность, как и МО.

Для примера, на рис.  4  показан вид нормального распределения при различных значениях СКО. Математическое ожидание и дисперсия являются наиболее часто применяемыми моментами, поскольку они определяют важные черты распределения: положение центра и степень разбросанности результатов относительно него.

Для более подробного описания распределения используются моменты более высоких порядков.

Третий центральный момент

служит характеристикой асимметрии,   или скошенности   распределения.

С его использованием вводится  коэффициент асимметрииν.

ν  =  μ3 [X] / σ3

Для  нормального распределения  коэффициент асимметрии равен нулю.

1 Погрешность результата измерения – это разница между результатом измерения X и истинным (или действительным) значением Q измеряемой величины: Δ=X-Q

2 Погрешность средства измерения — разность между показанием СИ и истинным (действительным) значением измеряемой ФВ. Она характеризует точность результатов измерений, проводимых данным средством.


 

А также другие работы, которые могут Вас заинтересовать

32276. Организация рабочего места каменщиков 405.5 KB
  Рабочее место каменщика при кладке стен включает участок возводимой стены и часть примыкающей к ней площади, в пределах которой размещают материалы, приспособления, инструмент и передвигается сам каменщик. Рабочее место каменщика состоит из трех зон (рис. 1, а, б) : рабочей 1 - свободной полосы вдоль кладки, на которой работают каменщики; зоны материалов
32277. Возведение кирпичных зданий следует осуществлять только поточным методом, предусматривающим деление здания на несколько одинаковых по трудоемкости захваток: по одно-, двух- и трехзахватной системам 67 KB
  Билет 7 Однозахватная система организации работ применяется преимущественно при строительстве небольших в плане односекционных домов при одноэтажном строительстве когда кладку ведут на всю высоту этажа при трехъярусном членении. В этот же день во вторую смену выполняют вспомогательные работы: установку подмостей доставку кирпича на подмости и т. На захватке рабочем участке где выполняют монтажные работы по условиям техники безопасности не могут одновременно работать каменщики и наоборот. В сельскохозяйственном строительстве при...
32278. Организация возведения кирпичных стен 26 KB
  Численность комплексной бригады может изменяться от 20 до 40 человек в зависимости от конструктивных особенностей здания и особенно кладки. При поточном выполнении каменной кладки основные понятия технологии работ имеют свое специфическое определение. Захватка типовая повторяющаяся в плане часть здания с приблизительно равными на данном и последующих за ним участках полсекции секция две секции объемами кладки предоставленная бригаде каменщиков для поточного выполнения работы на целое число смен.
32279. Конструктивных схемы и порядок монтажа конструкций каркасных многоэтажных гражданских зданий 47.5 KB
  Конструктивная схема каркасного здания:1 колонны 2 ригели 3 рядовые плиты перекрытий 4 связеваяплита перекрытий 5 навесные стеновые панели Каркасными рис. 5 сооружают общественные и административные здания. Колонны и ригели образуют несущие рамы воспринимающие вертикальные и горизонтальные нагрузки здания.
32280. Конструктивные схемы и порядок монтажа конструкций многоэтажных гражданских зданий с неполным каркасом и бескаркасных 138 KB
  Бескаркасные здания из кирпича и мелких камней и блоков возводят обычно с продольными несущими рис. В зданиях с поперечными несущими стенами рис. Возводятся также бескаркасные здания у которых несущими являются как поперечные так и продольные стены. Конструктивные схемы бескаркасных зданий с несущими стенами:а продольными б поперечными Бескаркасные крупноблочные здания со стенами из бетонных и других блоков имеют конструктивные схемы с поперечными и продольными несущими стенами рис.
32281. Схемы монтажа конструкций жилых крупнопанельных зданий с учетом конструктивных особенностей, условий устойчивости элементов, удобств и безопасности монтажа 81 KB
  Схемы монтажа конструкций жилых крупнопанельных зданий сучетом конструктивных особенностей условий устойчивостиэлементов удобств и безопасности монтажа Основные схемы монтажа крупнопанельных зданий Последовательность монтажа здания зависит от многих факторов: конструктивных особенностей здания; последовательности установки элементов рекомендуемой технологической картой; наличия подкосов фиксаторов монтажной оснастки. Схема монтажа крупнопанельных зданий с приобъектного склада рис. Схема монтажа элементов с приобъектного склада...
32282. Роль правосознания в правотворчестве и реализации права 30 KB
  Роль правосознания в правотворчестве и реализации права. Уровень правосознания законодателя его представления о значимости тех или иных правовых институтов его отношение к отдельным правовым явлениям напрямую выражаются в нормах права создаваемых в процессе правотворческой деятельности. юристыпрактики привлеченные к разработке проектов нормативных актов помогут обеспечить реальную применимость права его соответствие общественным реалиям связь права с общественной жизнью и юридической практикой. В процессе реализации права уровень...
32283. Правовая культура и правовое воспитание. Их понятие, соотношение и значение в условиях современной России 44.5 KB
  Юридическая культура важнейший элемент правовой системы общества непременное условие нормального функционирования государства. Правовая система без правовой культуры не действует. В отечественной литературе над проблемой правовой культуры активно работают такие ученыеправоведы как Н. Под правовой культурой предлагается понимать систему овеществленных и идеальных культурных элементов относящихся к сфере действия права и их отражение в сознании и поведении людей 'А.
32284. Понятие правоотношений. Их место в правовой системе и значение. Виды и структура правоотношений 47.5 KB
  Юридическую науку естественно интересуют прежде всего юридические или правовые отношения. Регулируя те или иные отношения оно тем самым придает им правовую форму в результате чего эти отношения приобретают новое качество и особый вид становятся правовыми облекаются в юридическую оболочку. Именно с помощью такого нормативного воздействия государственная власть переводит определенные отношения под свою юрисдикцию и защиту придает им упорядоченность стабильность устойчивость желаемую направленность вводит в нужное русло. Любые...