20219

Обобщённая структурная схема ЦСП

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

С выхода АЦП получаемый ИКМ сигнал объединяется с необходимыми сигналами сигнализации сигналами синхронизации СС дискретной информации ДИ и сигналами управления и взаимодействия СУВ. потеря синхронизации. Поэтому вопросам синхронизации в ЦСП уделяют особое внимание. Устройство временного разделения ВР демультиплексор разделяет высокоскоростной поток на низкоскоростные компоненты из которых в блоке выделения служебных сигналов ВСС выделяются сигналы синхронизации управления и взаимодействия.

Русский

2013-07-25

44.5 KB

20 чел.

Лекция №11

Обобщённая структурная схема ЦСП

В системах ЦСП неважно какой вид имеет первичный сигнал. Всё равно его преобразуют в цифровой.

Исходный (первичный) сигнал ограничивается по спектру ФНЧ, затем подвергается дискретизации (АИМ). Объединив N-первичных дискретизированных их подвергают квантованию (КВ) и далее преобразуют в цифровой кодированный сигнал (АЦП). С выхода АЦП получаемый ИКМ сигнал объединяется с необходимыми сигналами сигнализации, сигналами синхронизации (СС), дискретной информации (ДИ) и сигналами управления и взаимодействия (СУВ). В результате объединения их в формирователе цикла (ФЦ) образуется цикл передачи определённой структуры.

Если используются высокоскоростные системы передачи, то полученные цикловые сигналы могут объединяться с подобными же от других каналов, тем самым осуществляется временное группообразование (ВГ) – мультиплексирование. Здесь циклические последовательности от каждого канала выстраиваются в определённом порядке. При мультиплексировании объединяются М относительно низкоскоростных потоков в один, в котором за то же время нужно передать в М раз больше символов. Значит общий групповой поток будет более скоростным. Мультиплексор должен осуществлять согласование скоростей объединяемых потоков, а они могут быть не совсем одинаковыми, т.к. получены от разных источников, аппаратуры, линии связи. Из-за неполного согласования низкоскоростных составляющих возникают их сдвиги во времени относительно друг друга, что приводит к фазовому дрожанию цифрового сигнала и даже возможна ситуация потери моментов начала каждого цикла, т.е. потеря синхронизации. Поэтому вопросам синхронизации в ЦСП уделяют особое внимание.

Последним звеном на передающей стороне служит устройство преобразователь кода (ПК), преобразующее ИКМ сигнал в кодовую комбинацию, наиболее оптимальную для данного вида линии связи. В промежуточных пунктах цифрового линейного тракта осуществляется регенерация (Рег) цифрового сигнала.

На приёме ПК производит обратное преобразование линейного кода в двоичный групповой сигнал. Устройство временного разделения (ВР) – демультиплексор разделяет высокоскоростной поток на низкоскоростные компоненты из которых в блоке выделения служебных сигналов (ВСС) выделяются сигналы синхронизации, управления и взаимодействия. Из АИМ гр после ЦАП с помощью временного селектора (ВС) выделяются индивидуальные канальные сигналы АИМ. Сам сигнал восстанавливаются из АИМ с помощью ФНЧ.

Рассмотрим принципиальные трудности, приводящие к ухудшению качества передачи и появлению ошибок.

За счёт взаимной несинхронизированности исходных низкоскоростных ИКМ сигналов не бывает стабильным их взаимное временное положение, что, как уже говорилось выше, приводит к фазовым искажениям (дрожанию-джиттеру сигнала). Для выравнивания скоростей поступающих компонентных сигналов (в виде циклового фрагмента), в мультиплексоре используют буфера-регистры.

В линейном тракте качество передачи и ошибки могут появиться как за счёт искажения формы сигнала в линии, так и за счёт различных наводок. При этом могут возникать ошибочные символы, приводящие к появлению ошибочного “0” или “1” в цикле, что может изменить всю временную структуру группового сигнала. Частота появления ошибочных символов в линейном тракте с регенераторами обычно не велика, но имеется всегда. Эти искажения появляются на слух в виде щелчков, а в цифровой аппаратуре (например, в компьютере) приводит к ошибкам в информации.

Передающая сторона передаёт биты с определённой тактовой частотой. Для выделения этой частоты на приёмной стороне и на регенераторах в каждом цикле есть определённые ( по месту во времени) слоты синхронизации. Но аппаратная нестабильность и нестабильность (например, температурная) физических линий связи, приводят также к джиттеру сигналов синхронизации. Из-за этого тактовоя частота на приёмной стороне несколько отличается от передаваемой, что тоже приводит к искажению восстанавливаемого сигнала.

На приёме при обратном преобразовании линейного кодового сигнала в ИКМ сигнал любая ошибка позволяет размножение их в ИКМ сигнале с коэффициентом , где Р - вероятности.

В процессе временного разделения (ВР) –демультеплексирования  в случае ошибочного приёма команд согласования скоростей цикловых фрагментов (компонентных сигналов) может произойти потеря синхронизации, что приведёт к невозможности расставить компонентные сигналы во времени по своим местам, т.е. произойдёт нарушение связи по всем каналам  компонентных потоков. Для устранения этого явления разработаны специальные кодовые комбинации и специальные устройства отслеживания синхронизации,  которые при потере синхронизации за минимально возможное время (обычно это мс) восстанавливают синхронизацию. Но всё равно происходит сбой и ошибки. Сигналы синхронизации и управления выделяются блоком ВСС.

В ЦАП возникают свои искажения-формы сигнала.

Возникновение ошибок и искажений в ЦСП можно разделить на два больших класса:

  1.  Искажения, возникающие в оконечной аппаратуре в процессе дискретизации, квантования, кодирования и согласования скоростей.
  2.  Искажения, появляющиеся в линейном тракте в процессе регенерации (случайные ошибки, джиттер).


 

А также другие работы, которые могут Вас заинтересовать

16230. Изучение движения физического резонанса 151.5 KB
  Тема: Изучение движения физического резонанса. Введение Физическим маятником называется твердое тело находящееся в поле сил тяготения и имеющего ось вращения лежащую в плоскости перпендикулярной вектору ускорения свободного падения g. o
16231. Сложения двух гармонических колебаний точки 91.5 KB
  Лабораторная работа по физике на тему: Сложение гармонических колебаний. Колебание тела которое происходит по законам синуса или косинуса называется гармоническим Общее уравнение гармонических имеет вид. Гармонические колебания характеризуются...
16232. Определение скорости звука методом акустического резонанса 104.5 KB
  Определение скорости звука методом акустического резонанса. Краткая теория. Звуковые волны представляют собой последовательные сжатия и разряжения среды т. е. упругие волны частоты которых лежат в пределах от 20 до20000 Гц. Появление звука всегда обусловлено колебания...
16233. Определение логарифмического декремента затухания физического маятника 77 KB
  Лабораторная работа №2. Тема: Определение логарифмического декремента затухания физического маятника. Краткая теория Звуковые волны представляют собой последовательные сжатия и разряжения среды т. е. упругие волны частоты которых лежат в пределах от 20 до20000 Г...
16234. Создать поздравительную открытку 1.08 MB
  Создать поздравительную открытку. Описание задания: Любое из предложенных фото превратить в поздравительную открытку используя текст с применением спецэффекта по вашему усмотрению. Рекомендуем увеличить размер холста и сделать надпись выше или ниже изображения...
16235. Решение обыкновенных дифференциальных уравнений. Визуализация численных методов 223.5 KB
  КУРСОВАЯ РАБОТА по информатике: Визуализация численных методов. Решение обыкновенных дифференциальных уравнений. Содержание: Введение. Постановка задачи. Описание методов решения. Суть задачи. Геометрический смысл задачи. Численные методы реш...
16236. Визуализация численных методов 449.83 KB
  Курсовая работа Визуализация численных методов Cсодержание Содержание Введение 1. Постановка задачи и математическая модель 2. Описание используемых методов 3. Блоксхемы основных процедур 4. Виды формы проекта 5.Листинг программы на языке Visual Basic 6.Ре
16237. Визуализация численных методов. Решение обыкновенных дифференциальных уравнений 350 KB
  Визуализация численных методов. Решение обыкновенных дифференциальных уравнений. Содержание Введение. 1. Постановка задачи и математическая модель. 2. Описание численных методов применительно к конкретной задаче 3. Блоксхемы программ и основных подпрограм
16238. ИНФОРМАТИКА. ВИЗУАЛИЗАЦИЯ ЧИСЛЕННЫХ МЕТОДОВ. РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 241 KB
  ИНФОРМАТИКА. ВИЗУАЛИЗАЦИЯ ЧИСЛЕННЫХ МЕТОДОВ. РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Представлены методические рекомендации для выполнения курсовой работы и 30 вариантов заданий для курсовой работы по дисциплине Информатика для студентов 1го курса специ...