20219

Обобщённая структурная схема ЦСП

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

С выхода АЦП получаемый ИКМ сигнал объединяется с необходимыми сигналами сигнализации сигналами синхронизации СС дискретной информации ДИ и сигналами управления и взаимодействия СУВ. потеря синхронизации. Поэтому вопросам синхронизации в ЦСП уделяют особое внимание. Устройство временного разделения ВР демультиплексор разделяет высокоскоростной поток на низкоскоростные компоненты из которых в блоке выделения служебных сигналов ВСС выделяются сигналы синхронизации управления и взаимодействия.

Русский

2013-07-25

44.5 KB

19 чел.

Лекция №11

Обобщённая структурная схема ЦСП

В системах ЦСП неважно какой вид имеет первичный сигнал. Всё равно его преобразуют в цифровой.

Исходный (первичный) сигнал ограничивается по спектру ФНЧ, затем подвергается дискретизации (АИМ). Объединив N-первичных дискретизированных их подвергают квантованию (КВ) и далее преобразуют в цифровой кодированный сигнал (АЦП). С выхода АЦП получаемый ИКМ сигнал объединяется с необходимыми сигналами сигнализации, сигналами синхронизации (СС), дискретной информации (ДИ) и сигналами управления и взаимодействия (СУВ). В результате объединения их в формирователе цикла (ФЦ) образуется цикл передачи определённой структуры.

Если используются высокоскоростные системы передачи, то полученные цикловые сигналы могут объединяться с подобными же от других каналов, тем самым осуществляется временное группообразование (ВГ) – мультиплексирование. Здесь циклические последовательности от каждого канала выстраиваются в определённом порядке. При мультиплексировании объединяются М относительно низкоскоростных потоков в один, в котором за то же время нужно передать в М раз больше символов. Значит общий групповой поток будет более скоростным. Мультиплексор должен осуществлять согласование скоростей объединяемых потоков, а они могут быть не совсем одинаковыми, т.к. получены от разных источников, аппаратуры, линии связи. Из-за неполного согласования низкоскоростных составляющих возникают их сдвиги во времени относительно друг друга, что приводит к фазовому дрожанию цифрового сигнала и даже возможна ситуация потери моментов начала каждого цикла, т.е. потеря синхронизации. Поэтому вопросам синхронизации в ЦСП уделяют особое внимание.

Последним звеном на передающей стороне служит устройство преобразователь кода (ПК), преобразующее ИКМ сигнал в кодовую комбинацию, наиболее оптимальную для данного вида линии связи. В промежуточных пунктах цифрового линейного тракта осуществляется регенерация (Рег) цифрового сигнала.

На приёме ПК производит обратное преобразование линейного кода в двоичный групповой сигнал. Устройство временного разделения (ВР) – демультиплексор разделяет высокоскоростной поток на низкоскоростные компоненты из которых в блоке выделения служебных сигналов (ВСС) выделяются сигналы синхронизации, управления и взаимодействия. Из АИМ гр после ЦАП с помощью временного селектора (ВС) выделяются индивидуальные канальные сигналы АИМ. Сам сигнал восстанавливаются из АИМ с помощью ФНЧ.

Рассмотрим принципиальные трудности, приводящие к ухудшению качества передачи и появлению ошибок.

За счёт взаимной несинхронизированности исходных низкоскоростных ИКМ сигналов не бывает стабильным их взаимное временное положение, что, как уже говорилось выше, приводит к фазовым искажениям (дрожанию-джиттеру сигнала). Для выравнивания скоростей поступающих компонентных сигналов (в виде циклового фрагмента), в мультиплексоре используют буфера-регистры.

В линейном тракте качество передачи и ошибки могут появиться как за счёт искажения формы сигнала в линии, так и за счёт различных наводок. При этом могут возникать ошибочные символы, приводящие к появлению ошибочного “0” или “1” в цикле, что может изменить всю временную структуру группового сигнала. Частота появления ошибочных символов в линейном тракте с регенераторами обычно не велика, но имеется всегда. Эти искажения появляются на слух в виде щелчков, а в цифровой аппаратуре (например, в компьютере) приводит к ошибкам в информации.

Передающая сторона передаёт биты с определённой тактовой частотой. Для выделения этой частоты на приёмной стороне и на регенераторах в каждом цикле есть определённые ( по месту во времени) слоты синхронизации. Но аппаратная нестабильность и нестабильность (например, температурная) физических линий связи, приводят также к джиттеру сигналов синхронизации. Из-за этого тактовоя частота на приёмной стороне несколько отличается от передаваемой, что тоже приводит к искажению восстанавливаемого сигнала.

На приёме при обратном преобразовании линейного кодового сигнала в ИКМ сигнал любая ошибка позволяет размножение их в ИКМ сигнале с коэффициентом , где Р - вероятности.

В процессе временного разделения (ВР) –демультеплексирования  в случае ошибочного приёма команд согласования скоростей цикловых фрагментов (компонентных сигналов) может произойти потеря синхронизации, что приведёт к невозможности расставить компонентные сигналы во времени по своим местам, т.е. произойдёт нарушение связи по всем каналам  компонентных потоков. Для устранения этого явления разработаны специальные кодовые комбинации и специальные устройства отслеживания синхронизации,  которые при потере синхронизации за минимально возможное время (обычно это мс) восстанавливают синхронизацию. Но всё равно происходит сбой и ошибки. Сигналы синхронизации и управления выделяются блоком ВСС.

В ЦАП возникают свои искажения-формы сигнала.

Возникновение ошибок и искажений в ЦСП можно разделить на два больших класса:

  1.  Искажения, возникающие в оконечной аппаратуре в процессе дискретизации, квантования, кодирования и согласования скоростей.
  2.  Искажения, появляющиеся в линейном тракте в процессе регенерации (случайные ошибки, джиттер).


 

А также другие работы, которые могут Вас заинтересовать

36902. Изучение среды и простейших элементов 405.5 KB
  Домашнее задание выполняется по различным вариантам. В данном варианте меняется только цвет фона всей формы и цвет фона окна Text3. Варианты индивидуальных заданий. Разработать Windowsприложение вычисления значения функции у средствами Visul Bsic Вариант №1 у = b^2 c^2 t^2 Вариант №2 y = bc^3 c t^2 Вариант №3 y = b^3 c t^2 Вариант №4 y = c3 t c^2 Вариант №5 y = c^2 b t^2 Вариант №6 y = tk^5 c b^3 Вариант №7 y = c^3 t^2 b^5 Вариант №8 y = c^2 t b^2 Вариант №9 y = c^3 t b^2...
36903. Разработка приложений с разветвляющимися алгоритмами 359 KB
  Lbel1 Cption При х = Lbel2 Cption Функция вычисляется по формуле: Lbel3 Cption Получен результат Y = Lbel4 Cption Lbel5 Cption Лабораторная работа 2.Вариант 37 Text1 Text Text2...
36904. Изучение основных явлений поляризации света 483 KB
  Изучение основных явлений поляризации света. Цель работы: Получение и исследование поляризованного света и исследование свойств обыкновенных и необыкновенных лучей полученных с помощью двояко преломляющего кристалла. Принципиальная схема установки или её главных узлов: 1 упражнение: 2 упражнение: ИС источник света; ИС источник света; П поляроид 1поляризатор; Д...
36905. Изучение физических явлений, лежащих в основе работы полупроводникового фотоэлемента с запирающим слоем, определение зависимости фототока от освещенности, снятие ширины запрещенной зоны полупроводника 713 KB
  Цель работы: Изучение физических явлений лежащих в основе работы полупроводникового фотоэлемента с запирающим слоем определение зависимости фототока от освещенности снятие ширины запрещенной зоны полупроводника. На рисунке выше Ес энергия дна свободной зоны Ев энергия потолка валентной зоны; Fм Fп уровни Ферми металла и полупроводника Ам Ап работы выхода электрона из металла и полупроводника. Если уровень Ферми изолированного металла Fм лежит выше уровня Ферми полупроводника Fп т. Ам Ап то в первый момент их...
36906. Измерение холловской разности потенциалов в полулроводниковой пластине и определение концентрации, подвижности и знака носителей заряда, участвующих в токе 294.5 KB
  Эффект Холла в полупроводниках. Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: Эффект Холла заключается в возникновении поперечной разности потенциалов при пропускании тока через металлическую или полупроводниковую пластинку помещенную в магнитное поле направленное под некоторым углом к направлению тока. Классическая...
36907. Подтверждение боровской теории строения водородоподобных атомов 255.5 KB
  Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: В основе теории Бора лежат следующие постулаты: Первый постулат Бора постулат стационарных состояний: существуют некоторые стационарные состояния атома находясь в которых он не излучает энергии. Второй постулат Бора правило квантования орбит утверждает что в стационарном состоянии атома электрон двигаясь по круговой орбите должен иметь квантованные значения момента импульса удовлетворяющие условию где п = 1; 2;...
36908. Изучение процессов генерации и рекомбинации неравновесных носителей заряда в твердых телах при возбуждении их светом, экспериментальная проверка кинетики затухания рекомбинационной люминесценции при наличии центров захвата(ловушек) 658 KB
  Таблицы и графики Результаты измерений и расчетов: tc I1 мА I2 мА I3 мА I4 мА I5 мА Icp мА y = 10 0292 0284 0305 0293 0290 0293 0306 15 0264 0260 0265 0263 0261 0263 0379 20 0237 0238 0241 0243 0235 0239 0446 25 0220 0219 0216 0225 0228 0222 0501 30 0210 0209 0210 0203 0220 021 0543 35 0196 0192 0190 0195 0193 0193 061 40 0187 0185 0180 0179 0182 0183 0653 50 0170 0165 0165 0167 0170 0167 073 60 0158 0154 0156 0153 0154 0155 0796 70 0149 0147 0143 0144 0146...
36909. Кластерный анализ. Агломеративные методы 16.97 KB
  В качестве выбора нового расстояния между кластерами рассмотреть: 1Метод дальнего соседа 2Метод ближнего соседа. 3 Используем метод дальнего соседа. 4 Используем метод ближнего соседа. Решение поставленной задачи: 1Центрируем и нормируем: 2Рассчитаем матрицу расстояний: 1 2 3 4 5 6 Далее поскольку матрицы будут симметричными будут записаны полученные данные только над главной диагональю 3По методу...
36910. МОДЕЛИРОВАНИЕ ЗВЕНЬЕВ АВТОМАТИЧЕКСКИХ СИСТЕМ 346.5 KB
  1 Безынерционное звено Рис. 2 Интегрирующее звено Рис. 3 Апериодическое звено 1 порядка Рис. 4 Колебательное звено Переходные ht и передаточные Wp характеристики звеньев имеют вид: Безынерционное звено Wp=k Интегрирующее звено Wp=k p Апериодическое звено Wp=k Tp1 Колебательное звено Wp=k1 T2p22k2Tp1...