20246

Взаємодія повільних нейтронів

Доклад

Физика

Зіткнення нейтрона з ядром може відбуватись двома шляхами: або 1без утворення проміжного ядра коли нейтрон розсіюється безпосередньо силовим полем ядрапружне та непружне розсіяння 2або з утворенням проміжного збудженого ядра з наступним його розпадом по одному з можливи каналів: Авипромінювання γ квантів процес радіаційного захвату нейтрона ядром Б випромінювання заряджених частинок В ділення ядра В області повільних нейтронів енергія 1еВ основні процеси пружне ядерне розсіяння радіаційний захват нейтрона ядрома бо...

Украинкский

2013-07-25

57 KB

0 чел.

30. Взаємодія повільних нейтронів

З 4-ох існуючих в природі типів взаємодії елементарних частинок і полів (сильне, слабке, електромагнітне і гравітаційне) для нейтронів, що взаємодіють з речовиною, суттєві 2: сильна (ядерна) і електромагнітна взаємодія, обумовлена наявністю у нейтрона магнітного дипольного моменту.

Електромагнітна взаємодія, можливі наступні процеси:

1.Магнітна взаємодія – взаємодія магнітного моменту  нейтрона з магнітним моментом електронної оболонки атому.

2. Взаємодія магнітного моменту  нейтрона з електронним полем ядра (взаємодія Швінгера)

3. Взаємодія магнітного моменту  нейтрона з магнітним моментом атомного ядра

4. Нейтрон-електронна взаємодія , обумовлена властивостями нейтрона, як елементарної частинки.

Основним процесом взаємодії нейтрона з речовиною є ядерна взаємодія. Взаємодія може бути пружною і не пружною. В першому випадку сумарна кінетична енергія нейтрона і ядра зберігається, у другому не пружні процеси змінюють сумарну кінетичну енергію. Зіткнення нейтрона з ядром може відбуватись двома шляхами: або 1)без утворення проміжного ядра, коли нейтрон розсіюється безпосередньо силовим полем ядра(пружне та непружне розсіяння), 2)або з утворенням проміжного збудженого ядра з наступним його розпадом по одному з можливи каналів:

А)випромінювання γ – квантів (процес радіаційного захвату нейтрона ядром)

Б) випромінювання заряджених частинок

В) ділення ядра

В області повільних нейтронів (енергія<1еВ) основні процеси - пружне ядерне розсіяння, радіаційний захват нейтрона ядром(а) (бо випромінюючи γ – квант ядро може перейти на менш збуджені рівні, тобто при випромінюванні  γ – кванта є багато варіантів протікання реакції, а при випромінюванні заряджених частинок лише 1, тому (а) більш імовірнісний процес). Електронне розсіяння досягає значної величини лише в магнітних матеріалах (обумовлене взаємодією між магн. моментом нейтрона та ел. оболонкою атома) 

Нехай на зразок падає потік нейтронів І0 в одиницю часу на одиницю площі. Якщо прийняти Іs і Ia як кількість актів розсіяння і поглинання нейтронів в одиницю часу в зразку, то повний переріз розсіяння  і поглинання  будуть визначені через наступні співвідношення:

  

Обидві величини , мають розмірність площі. Як правило вони вимірюються в барнах:

1 барн = 10-24см2.

В теорії розсіяння нейтронів також вводять диференційний та двічі диференційний перерізи розсіяння

 Диференційний переріз розсіяння  задає ймовірність того, що в результаті розсіяння нейтрон вилетить із зразка під певним кутом  в елемент тілесного кута

 Двічі диференційний переріз  задає ймовірність того, що в результаті розсіяння нейтрон вилетить із зразка під певним кутом  в елемент тілесного кута  і при цьому зміна енергії нейтрона потрапляє в інтервал від  до .

Розглянемо задачу про розсіяння в загальному вигляді. Нехай є два розсіюючі центри. Падаючи на ці центри, початкова плоска хвиля розсіюється на них, і кожен центр стає джерелом вторинних сферичних хвиль. Таким чином, хвиля, що пройшла через речовину представляє собою суперпозицію двох хвиль: падаючої плоскої хвилі і розсіяної сферичної . Для розсіяної хвилі в першому борнівському наближенні маємо:

де:  ,  – хвильові вектори падаючої та розсіяної хвилі, А0 – амплитуда падаючої хвилі, - амплітуда розсіяння нейтронної хвилі (довжиною розсіяння), яка визначається виглядом потенціалу взаємодії нейтрона з ядром. θ – кут розсіяння. Амплітуда розсіяння може сильно відрізнятися для ізотопів однієї речовини. Довжина розсіяння є фундаментальною характеристикою взаємодії нейтрона з ядром, яка залежить від типу ізотопу елемента і відносної орієнтації спіну нейтрона та спіну ядра.

Якщо розсіяння нейтрона відбувається на групі атомів (чи молекул), то внаслідок того, що довжина хвилі повільного нейтрона співрозмірна з міжатомною відстанню чи навіть перевищує її, нейтронна хвиля взаємодіє з колективом атомів. Це значить, що один розсіюючий акт повинен бути віднесений не до окремого атома, а до колективу.

При когерентному розсіянні складаються амплітуди хвиль, розсіяних різними центрами. В результаті інтерференції виникає єдина хвиля (з сумарною амплітудою), розсіяна колективом як цілим. Квадрат цієї сумарної амплітуди і визначає когерентну складову перерізу розсіяння.

 Наявність елементу безладдя в колективі розсіюючих центрів, всіляких відхилень від загальної норми призводить до некогерентного розсіяння. Тоді складаються квадрати амплітуд окремих розсіяних хвиль, тому переріз неког. розсіяння є просто сума перерізів розсіяння на окремих центрах.

, , i- номер розсіюючого центра

Види некогерентності: ізотопічна, спінова (залежність від взаємної орієнтації спінів нейтрона і ядра), структурна (тепловий рух атомів).

 Таким чином, атоми колективу можуть брати участь в розсіянні двояким чином: або як єдиний колектив, або як окремі незалежні розсіюючі центри. Наслідком цього є розбиття перерізу розсіяння на дві складові – когерентну і некогерентну:


 

А также другие работы, которые могут Вас заинтересовать

19521. Амплитудно фазовый критерий Найквиста 3.26 MB
  Амплитудно фазовый критерий Найквиста. АФ критерий Найквиста позволяет оценить устойчивость системы с отрицательной обратной связью то есть замкнутый по найденной экспериментальной или из передаточной функции АФХ разомкнутой системы. Рассмотрим замкнутый контур....
19522. Показатели качества переходных процессов 1.78 MB
  Показатели качества переходных процессов. Процессам управления представляют следующие основные требования по точности установившихся режимов по устойчивости и по качеству переходных процессов. Устойчивость САУ то есть затухание протекающих в ней процессов явля
19523. Интегральные критерии качества 1.75 MB
  Интегральные критерии качества. Интегральный критерий дает обобщенную оценку качество переходного процесса одну из достоинств интегральных критериев в том что для их определения не обязательно строить график переходного процесса что иногда является затруднительны...
19524. Расширенные частотные характеристики 1.3 MB
  Расширенные частотные характеристики. При разработки САУ критерия качества применяют не только для оценки готовых систем но их используют на стадии разработки вводя в расчеты и тогда параметры системы получают с учетом определенных требований. Наиболее удобным пока...
19525. Пропорциональный закон регулирования 341 KB
  Пропорциональный закон регулирования описывается следующим уравнением . Здесь: параметр настройки регулятора. заданное значение регулируемой координаты. Знак означает что регулятор включен в систему по принципу отрицательной обратной. Уравнение регулятора
19526. Интегральный закон регулирования 454.5 KB
  Интегральный закон регулирования описывается уравнением. Как видно из уравнения интегральным регулятором является интегрирующие звено с постоянной интегрирования которая является параметром настройки регулятора. Динамические характеристики: ; АФХ ; АЧХ ; ФЧХ ...
19527. Пропорционально-дифференцируемый (ПД - регулятор) 1014 KB
  Пропорционально-дифференцируемый ПД регулятор Представляет собой параллельное соединение пропорционально и дифференциальной составляющей. Динамические характеристики: С точки зрения качества переходных процессов ПД регулятора обладае...
19528. Пропорционально – интегральный регулятор (ПИ) 798 KB
  Пропорционально интегральный регулятор ПИ Динамические характеристики: Система с ПИ регулятором не дает статической ошибки. ПИ регулятор сочетает в себе достоинство обеих простейших составляющих. П составляющая обеспеч...
19529. Пропорционально – интегрально дифференцируемый регулятор (ПИД) 1.11 MB
  Пропорционально интегрально дифференцируемый регулятор ПИД АФХ АЧХ: ФЧХ ПИД регулятор сочетает в себе достоинства всех 3х составляющих. Высокое быстродействие П составляющей малая динамическая ошибка за счет воздействия по скорости и отсутст...