20268

Оборудование подсистемы базовой станции (BSS)

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

1: контроллера базовой станции BSC Base Station Controller; базовой станции BTS Base Transceiver Station. Контроллер базовой станции BSC Контроллер базовой станции BSC центральная часть подсистемы базовой станции BSS. Контроллер BSC фирмы Ericsson рис. Контроллер BSC может контролировать радиосеть и рационально выравнивать временные дисбалансы в нагрузке на сеть.

Русский

2013-07-25

523.5 KB

102 чел.

ЛЕКЦИЯ 5

Оборудование подсистемы базовой станции (BSS) (ЧАСТЬ 1)

Все функции, связанные с радиоканалом, концентрируются в подсистеме базовых станций (BSSBase Station Subsystem), которая отвечает за установку и поддержание соединении мобильными станциями (MSMobile Stations). BSS распределяет радиоканалы для голосовых и информационных сообщений, устанавливает радиосоединения и выступает в качестве ретрансляционной станции между мобильными станциями и центром коммутации (MSCMobile Services Switching Center).

BSS состоит из двух основных элементов (рис. 1):

  •  контроллера базовой станции (BSC — Base Station Controller);
  •  базовой станции (BTS — Base Transceiver Station).

Организацию подсистемы базовой станции рассмотрим на примере оборудования Ericsson и Alcatel. RBS 2000 — является реализацией фирмой Ericsson спецификаций G для базовой станции.

Рис. 2. Подсистема базовой станции (BSS)

1. Контроллер базовой станции (BSC)

Контроллер базовой станции (BSC) — центральная часть подсистемы базовой станции (BSS). Контроллер обеспечивает общее управление радиосетью и выполняет следующие функции:

управление соединением MS;

управление радиосетью;

концентрация трафика;

управление передачей базовых станций (BTS);

транскодирование и адаптация скорости передачи;

дистанционное управление базовыми станциями.

Контроллер BSC фирмы Ericsson (рис. 8.6) основывается на платформе коммутации АХЕ10. Он располагает всеми средствами, необходимыми для управления радиосетью. Контроллер BSC может контролировать радиосеть и рационально выравнивать временные дисбалансы в нагрузке на сеть. Контроллер BSC также отслеживает каналы в направлении центра коммутации мобильных служб (MSC) и базовой станции (BTS) и при необходимости генерирует команды для блокирования неисправных цепей. Обобщенная структура BSC представлена рис. 2.

Рис. 2. Подсистемы в BSC

На рис. 6 представлены следующие подсистемы BSC: CCS — ОКС; CPS — центрального процессора; DCS — обмена данными; FMS — управления файлами; GSS — коммутационного поля; LHS — контроля каналов; MAS — технического обслуживания; MCS — общения человек/машина; OMS — эксплуатации и технического обслуживания; RCS — радиоконтроля; ROS — радиоэксплуатации; RPS — регионального процессора; SPS — процессора поддержки; STS — статистики и измерения нагрузки; TAS — приемопередающая административная подсистема; TRS — приемопередающая подсистема.

Специальные мобильные подсистемы BSC:

  •  подсистема контроля каналов (LHS) — управляет коммутацией на базовой радиостанции (RBS), которая подключает приемопередатчики к ИКМ линии, соединяющей RBS и BSC. Приемопередатчики управляют передачей к/от MS;
  •  административная приемопередающая подсистема (TAS) — контролирует работу и
    управляет физическим оборудованием базовой станции;
  •  подсистема радиоконтроля (RCS) — контролирует управление радиосетью. Включает
    некоторые функции для
    MS: установление и разъединение соединений по требованию;
  •  подсистема радиоэксплуатации (ROS) — управляет интерфейсами к MSC и RBS.
    В
    ROS представлены функции эксплуатации и технического обслуживания для BSC;
  •  приемопередающая подсистема (TRS) — обеспечивает управление радиооборудованием RBS.

Конфигурация аппаратных средств BSC представлена на рис. 3.

Рис. 3. Конфигурация аппаратных средств BSC

В состав аппаратных средств АХЕ10, реализующих контроллер базовой станции (BSC) входят: GS (Group Switch) — групповой коммутатор; ETC (Exchange Terminal Circuit) — комплект станционного терминала; СР (Central Processor) — центральный процессор; ST-7 (Signaling Terminal № 7) — сигнальный терминал (ОКС № 7); RP (Regional Processor) — региональный процессор; RPG (Regional Processor Group) — группа региональных процессоров; TRH (Transceiver Handler) — блок управления приемопередачи; TRAU (Transceiver and Rate Adaptation Unit) — транскодер и адаптер скорости передачи; SRS (SubRate Switch) — коммутатор каналов; PCD-D (Pulse Code Device-Digital) — цифровой кодер; SP (Support Processor) — процессор поддержки.

Один контроллер базовой станции (BSC) может управлять до 1020 приемопередатчиками (TRUTransceiver Unit), которые входят в состав соответствующих базовых станций. Контроллер базовой станции снабжен тремя основными блоками. Это транскодер и адаптер скорости передачи (TRAU), блок управления приемапередачи (TRH) и коммутатор каналов SubRate SwitchSRS).

Транскодер и адаптер скорости передачи (TRAU) отвечают за кодировку речи и адаптацию скорости передачи с 64 до 13 кбит/с. TRH обрабатывает сигнальную информацию и данные измерений, необходимые для выполнения функции хэндовера. SRS обеспечивает более эффективное использование интерфейса A-bis.

В стандарте GSM предусмотрено два основных интерфейса для контроллеров базовой станции: от центра коммутации MSC к контроллеру базовой станции — А-интерфейс; между контроллером базовой станции (BSC) и базовой станцией (BTS) — A-bis интерфейс.

Базовая станция

Структурная схема базовой станции RBS 2000

Базовая станция RBS 2000 — второе поколение базовых радиостанций, разработанное компанией Ericsson в соответствии со спецификациями GSM. Гибкая конструкция предоставляет возможность создания определенного количества конфигураций и расширений по мере роста сети. Базовая станция поддерживает иерархическую структуру сот (Hierarchical cell StructuresHCS) до трех уровней. Уровнями могут быть: макросоты для обеспечения общего радиопокрытия, микросоты на уличном уровне и пикосоты для обеспечения покрытия в помещениях. Семейство RBS 2000 поддерживает как всенаправленную, так и секторизованную конфигурацию сот.

Обобщенная структурная схема базовых станций семейства RBS представлена на рис. 4. Стандартное оборудование состоит из определенного количества съемных блоков (RUReplaceable Units) и шин (Bus).

Основные функции блоков RBS 2000 представлены в табл. 1.

Таблица 1. Основные функции блоков RBS 2000

Блоки RBS 2000

Функции

DXU (Distribution Switch Unit) — блок распределения и коммутации

  •  Интерфейс с каналом 2 Мбит/с. Проключает определенные тайм-слоты к определенным передатчикам;
  •  Формирование тактовой последовательности;
  •  Работа с базой данных, содержащей информацию по всему оборудованию RBS.

TRU (Transceiver Unit) — блок приемопередатчика

  •  Выполняет функции по формированию и обработке физических каналов на паре несущих частот;
  •  Радиоприем;
  •  Радиопередача;
  •  Усиление мощности.

ECU (Energy Control Unit) — блок контроля энергетическими параметрами

  •  Контроль и управление схемами питания и климатической установкой.

CDU (Combining and Distribution Unit) — блок объединения и распределения

  •  Объединение передаваемых сигналов;
  •  Распределение принимаемых сигналов.

Рис. 4. Обобщенная структурная схема базовых станций семейства RBS 2000

Функциональные модули RBS 2000

Блок распределения и коммутации (DXU)

Блок распределения и коммутации (DXU) — это центральный управляющий блок RBS (рис. 5). В состав RBS входит один блок DXU. Этот блок обеспечивает системный интерфейс посредством кросс-коммутации Е1 цифровых потоков транспортной сети и отдельных временных интервалов (тайм-слотов) к соответствующим им приемопередачикам. DXU реализует функции, общие для одной RBS:

распределительную коммутацию;

интерфейс с контроллером базовых станций (BSC);

синхронизацию;

сбор аварийных сигналов (Alarm);

интерфейс локальной шины типа RS 485;

контроль ошибок передачи;

интерфейс с ОМТ (ОМТ interface) типа RS 232;

концентрация каналов управления (с сигнализацией LAPD) по направлению к BSC;

поддержание базы данных по оборудованию стойки.

При помощи данных функций DXU организовывает соединение с BSC и коммутирует отдельные тайм-слоты к определенным приемопередатчикам.

Рис. 5. Функциональная схема DXU

Сигнал тактовой частоты для RBS генерируется посредством выделения синхронизирующей информации из канала Е1 или от внутреннего источника.

Дополнительно, для упрощения обслуживания оборудования, существует база данных, содержащая информацию об установленном (инсталлированном) оборудовании — инсталляционная база данных (IDBInstallation Data Base). IDB интегрирована с DXU, она содержит идентификатор каждого блока, его местоположение и соответствующие параметры конфигурации. Идентификатор блока включает его артикул, номер версии и серийный номер.

Конфигурацией DXU управляет BSC посредством сигнализации LAPD, не задействуя информационные тайм-слоты канала Е1.

DXU разделен на следующие основные секции:

ИКМ-часть (PCM-part), или интерфейсный коммутатор;

блок центрального процессора (CPU — Central Processing Unit);

блок синхронизации (CTU — Central Timing Unit);

концентратор контроллера каналов данных высокого уровня (High level Data Link
Controller (HDLC) concentrator).

Интерфейсный коммутатор (PCM-part) — предназначается для выделения тайм-слотов из A-bis канала и передачи их к блокам приемопередачиков (TRU) по локальной шине. К портам А/В блока DXU можно подключить две ИКМ линии, что может быть использовано для повышения емкости или обеспечения избыточности на каналах передачи.

Кроме того, PCM-part может перенаправлять в другие направления тайм-слоты, не используемые в данной БС. Данная функция, увеличивающая гибкость системы, называется мультисброс (MultiDrop) или каскадирование. Например, к одной Е1 линии от BSC может быть подключено до пяти БС. Входящие тайм-слоты подключаются к порту А блока DXU. Исходящие тайм-слоты, направляемые на другие БС, проключаются на порт В. Функция каскадирования активизируется при помощи ОМТ при инсталляции.

Блок центрального процессора (CPU) осуществляет управление ресурсами БС. Дополнительно этот блок отвечает:

за загрузку и хранение программного обеспечения съемных блоков;

за интерфейс с ОМТ;

за эксплуатацию и поддержку;

за обработку внутренних и внешних аварийных сигналов;

за выделение информации сигнализации LAPD.

Блок синхронизации (CTU) генерирует стабилизированные синхронизирующие последовательности для приемопередачиков. CTU может быть засинхронизирован от канала A-bis или от внешнего источника, дополнительно поставляемой платы синхронизации — приемника глобальной системы определения местоположения (GPS).

Концентратор (HDLC) обеспечивает функцию концентрации и мультиплексирования каналов LAPD. Это увеличивает емкость ИКМ линии. Концентратор HDLC считывает информацию сигнализации для передатчиков и распределяет ее к блокам TRU или блоку CPU в DXU.


 

А также другие работы, которые могут Вас заинтересовать

28230. Классификация эмоций. Эмоции и чувства. Виды чувств 36 KB
  Эмоции и чувства. По критерию мобилизации ресурсов организма: стенические вызывают прилив энергии астенические По модальности Плутчек: любовь Радость Принятие оптимизм подчинение Страх Удивление Печаль Отвращение Гнев агрессия благоговение Ожидание разочарование презрение жалость Основные виды эмоций классификация по силе и деятельности проявлений: аффекты страсти собственно эмоции настроение чувства стресс. Чувства еще...
28231. Способы управления эмоциями. Защитные механизмы и совладающее поведение 43.5 KB
  Защитные механизмы и совладающее поведение. Защитные механизмы психики. Отрицание Проекция Приписывает свои мотивы другим людям атрибутивнаяособзает черту и бессознателтно приписывает другим комплементарная осознает но источник лежит в другом классическая не признает качество Смешение Смещение объекта смещение влечения Регрессия объекта при разводе к маме Идентификация принимает личные характеристики другого на себя Компенсация Реактивное образование Замена на противоположные импульсы Рационализация Сублимация...
28232. Психические состояния и их классификация 31.5 KB
  Левитов: Состояние – целостная характеристика психической деятельности и поведения за некоторый период времени показывающая своеобразие протекания психических процессов в зависимости от отражения объектов и явлений действительности в настоящий момент в зависимости от конкретной ситуации предшествующего состояния и психических свойств личности. Состояние – целостная организация поведения и деятельности за определенный момент времени. Психическое состояние – относительно устойчивое психическое явление характеризующее психику в целом фон на...
28233. Диагностические и прогностические возможности интеллектуального тестирования (краткая характеристика основных интеллектуальных) 64 KB
  В отечественной психологии интеллект рассматривается как компонент индивидуальности связанный с личностными характеристиками исследования связей интеллекта с эмоциональноволевыми особенностями социальноэкономическими условиями и т. В истории исследования генезиса интеллекта человека можно выделить 2 главных подхода взаимно обогащающих друг друга. Источник развития интеллекта – в нем самом развитие представляет собой развертывание стадий операторных механизмов по сформированным природой алгоритмам. Интеллект необходимо рассматривать как...
28234. ПСИХОЛОГИЧЕСКАЯ СТРУКТУРА ЧЕЛОВЕКА (ИНДИВИД-ЛИЧНОСТЬ-ИНДИВИДУАЛЬНОСТЬ) В РАБОТАХ Б.Г.АНАНЬЕВА 32 KB
  Форма развития индивида – онтогенетическая эволюция которая идет по филогенетической программе но модифицируется под влиянием социальной истории в соответствии с возрастом и индивидуальной изменчивостью: постепенно усиливается влияние социальных свойств личности. На развитие индивида накладывается развитие личности → ступени общественного воспитания образования и обучения стали определяющими характеристиками периодов развития индивида. статус личности в обществе активная позиция человека статус общности в которой формировалась личность...
28235. Развитие сознания и самосознания в онтогенезе. Функции самосознания: самопознание, саморегуляция и самоорганизация 35 KB
  Во всех видах деятельности и поведения эти отношения следуют за отношением к ситуации предмету деятельности к другим людям. Требуется накопление опыта множества подобных осознаний себя субъектом поведения для того чтобы oтношение к себе превратились в свойство называемое рефлексивностью. Чужую самооценку например родительскую; Способы регуляции поведения; 6. Самосознание культурный феномен позволяющий сохранять постоянство собственного поведения и испытывать чувство ответственности за социальные ценности усвоенные индивидом.
28236. «Образ Я» и «Я-концепция». Структура, этапы формирования, функции имеханизмы защиты 42.5 KB
  Описательная составляющая Яконцепции образ Я или картина Я; составляющая связанная с отношением к себе или к отдельным своим качествам самооценка или принятие себя. Три главных элемента Я концепции: Когнитивная составляющая образ Я представление индивида о самом себе. Составляющие Яконцепции: реальное Я представление о себе в настоящем времени идеальное Я то каким субъект по его мнению должен был бы стать ориентируясь на моральные нормы. Бернс выделяет следующие основные ракурсы Яконцепции: Реальное Я установки...
28237. Личность в системе отношений и структура отношений личности. Взгляды В.М. Бехтерева, А.Ф. Лазурского и В.Н. Мясищева 46 KB
  Личность в системе отношений и структура отношений личности. Психология отношений специфическая теория личности имеет существенное значение при исследовании проблем нормального и патологического формирования личности происхождения болезней и механизмов их развития особенностей клинических проявлений лечения и предупреждения. Одно из фундаментальных положений психологии отношений является понимание личности как системы отношений индивида с окружающей средой. Эти отношения представляют собой преимущественно сознательную основанную на...
28238. НЕЙРОТИПИЧЕСКИЕ ОСОБЕННОСТИ ЧЕЛОВЕКА (Б.М.ТЕПЛОВ, В.Д.НЕБЫЛИЦЫН, Е.П.ИЛЬИН) 68 KB
  НЕЙРОТИПИЧЕСКИЕ ОСОБЕННОСТИ ЧЕЛОВЕКА Б.ИЛЬИН Свойства НС это устойчивые особенности НС влияющие на индивидуальные психологические особенности человека. Свойства НС – природные врожденные особенности НС влияющие на формирование индивидуальных форм поведения у животных и некоторых индивидуальных различий способностей и характера у человека Павлов Теплов. Тип высшей нервной деятельности генотип темперамент следует отличать от характера фенотипа или склада высшей нервной деятельности который есть сплав из черт типа и тех черт...