20358

ПОЛУПРОВОДНИКОВЫЕ УМНОЖИТЕЛИ ЧАСТОТЫ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

ПОЛУПРОВОДНИКОВЫЕ УМНОЖИТЕЛИ ЧАСТОТЫ 17. Транзисторный умножитель частоты 17. Диодные умножители частоты 17. Назначение принцип действия и основные параметры Умножители частоты в структурной схеме радиопередатчика см.

Русский

2013-07-25

47.5 KB

192 чел.

4

Лекция 17. ПОЛУПРОВОДНИКОВЫЕ УМНОЖИТЕЛИ ЧАСТОТЫ

17.1. Назначение, принцип действия и основные параметры

17.2. Транзисторный умножитель частоты

17.3. Диодные умножители частоты

17.4. Контрольные вопросы

17.1. Назначение, принцип действия и основные параметры

Умножители частоты в структурной схеме радиопередатчика (см. рис. 2.1) располагаются перед усилителями мощности ВЧ или СВЧ колебаний, повышая в требуемое число раз частоту сигнала возбудителя. Умножители частоты могут также входить в состав и самого возбудителя или синтезатора частот. Для входного и выходного сигнала умножителя частоты запишем:

(17.1)

где п — коэффициент умножения частоты в целое число раз.

Классификация умножителей частоты возможна по двум основным признакам: принципу действия, или способу реализации функции (17.1), и типу нелинейного элемента. По принципу действия умножители подразделяют на два вида: основанные на синхронизации частоты автогенератора внешним сигналом (см. разд. 10.3), в п раз меньшим по частоте (рис. 17.1,а), и с применением нелинейного элемента, искажающего входной синусоидальный сигнал, и выделением из полученного многочастотного спектра требуемой гармоники (рис. 17.1,б).

Рис. 17.1. Умножители частоты.

По типу используемого нелинейного элемента умножители частоты второго вида подразделяют на транзисторные и диодные.

Основными параметрами умножителя частоты являются: коэффициент умножения по частоте n; выходная мощность n-й гармоники Рn, входная мощность 1-й гармоники Р1, коэффициент преобразования Кпр=Рn/Р1; коэффициент полезного действия =Рn/Р0 (в случае транзисторного умножителя), уровень подавления побочных составляющих.

Недостаток умножителей частоты (рис. 17.1, а) первого вида состоит в сужении полосы синхронизма с увеличением номера гармоники п. У умножителей частоты второго вида уменьшается коэффициент преобразования Кпр с повышением п. Поэтому обычно ограничиваются значением n = 2 или 3 и при необходимости включают последовательно несколько умножителей частоты, чередуя их с усилителями.

17.2. Транзисторный умножитель частоты

Схема транзисторного умножителя частоты (рис. 17.2) и методика его расчета практически ничем не отличаются от усилителя.

Необходимо только выходную цепь генератора настроить на n-ю гармонику и выбрать значение угла отсечки =120/n, соответствующее максимальному значению коэффициента n(). При расчете выходной цепи коэффициент разложения косинусоидального импульса по 1-й гармонике 1() следует заменить на коэффициент по n-й гармонике n(). Контур в выходной цепи, настроенный в резонанс с n-и гармоникой сигнала, должен обладать удовлетворительными фильтрующими свойствами.

Рис. 17.2. Схема транзисторного умножителя частоты.

Коэффициент умножения схемы на рис. 17.2 обычно не превышает 3–4 раз при КПД, равном 10–20%.

17.3. Диодные умножители частоты

Работа диодных умножителей частоты основана на использовании эффекта нелинейной емкости. В качестве последней используется барьерная емкость обратно смещенного р-n-перехода. Полупроводниковые диоды, специально разработанные для умножения частоты, называются варакторами. При =0,5 и 0=0,5 В для нелинейной емкости варактора получим:

,     (17.2)

где и - обратное напряжение, приложенное к p-n-переходу.

График нелинейной функции (17.2) показан на рис. 17.3.

Рис. 17.3. График нелинейной функции (17.2).

Заряд, накапливаемый нелинейной емкостью, с напряжением и током связаны зависимостями:

,   (17.3)

Две основные схемы диодных умножителей частоты с варакторами приведены на рис. 17.4.

Рис. 17.4. Диодные умножители частоты с варакторами.

В схеме диодного умножителя параллельного вида (рис. 17.4, а) имеются два контура (или фильтра) последовательного типа, настроенные в резонанс соответственно с частотой входного и выходного n сигналов. Такие контуры имеют малое сопротивление на резонансной частоте и большое - на всех остальных (рис. 17.5).

Рис. 17.5.Зависимость сопротивления контура от частоты.

Поэтому первый контур, настроенный в резонанс с частотой входного сигнала о, пропускает только 1-ю гармонику тока, а второй контур, настроенный в резонанс с частотой выходного сигнала n, - только n-ю гармонику. В результате ток, протекающий через варактор, имеет вид:

,  (17.4)

Поскольку емкость варактора (17.2) есть нелинейная функция, то согласно (17.3) при токе (17.4) напряжение на варакторе отлично от синусоидальной формы и содержит гармоники.

Одна из этих гармоник, на которую настроен второй контур, проходит в нагрузку.

Таким образом, с помощью нелинейной емкости в устройстве происходит преобразование мощности сигнала с частотой в сигнал с частотой n, т.е. умножение частоты.

Аналогичным образом работает вторая схема умножителя частоты последовательного вида (рис. 17.4, б), в которой имеется два контура (или фильтра) параллельного типа, настроенные в резонанс соответственно с частотой входного и выходного n сигналов. Такие контуры имеют большое сопротивление на резонансной частоте и малое - на всех остальных. Поэтому напряжение на первом контуре, настроенном в резонанс с частотой входного сигнала , содержит только 1-ю гармонику, а на втором контуре, настроенном в резонанс с частотой выходного сигнала n, - только n-ю гармонику. В результате напряжение, приложенное к варактору, имеет вид:

,  (17.5)

где U0 - постоянное напряжение смещения на варакторе.

Поскольку емкость варактора (17.2) есть нелинейная функция, то согласно (17.3) при напряжении (17.5) ток, протекающий через варактор, отличен от синусоидальной формы и содержит гармоники. Одна из этих гармоник, на которую настроен второй контур, проходит в нагрузку. Таким образом, с помощью нелинейной емкости в схеме происходит преобразование мощности сигнала с частотой в сигнал с частотой n, т.е. умножение частоты.

Варакторные умножители частоты в ДЦВ диапазоне при n=2 и 3 имеют высокий коэффициент преобразования Кпр=Pn/P1=0,6…0,7. При больших величинах п в СВЧ диапазоне значение Кпр уменьшается до 0,1 и ниже.

17.4. Контрольные вопросы

1. Каким образом осуществляется умножение частоты колебаний?

2. Нарисуйте схему транзисторного умножителя частоты.

3. Поясните, почему с помощью нелинейной емкости можно производить умножение частоты колебаний.

4. Нарисуйте схемы диодного умножителя частоты последовательного и параллельного типа. В чем состоят различия между ними?


 

А также другие работы, которые могут Вас заинтересовать

40780. ПЕРВИЧНЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ (ДАТЧИКИ) 388.01 KB
  Примеры статической и динамической характеристик датчика: а статическая характеристика б динамическая характеристика Реостатные преобразователи Принцип действия и конструкция. В измерительной технике требуются реостатные преобразователи как с линейной так и с нелинейной функцией преобразования. Тензорезисторные преобразователи Принцип действия и конструкция.
40781. Фонетико-орфоэпические нормы или нормы ударения и произношения 29.73 KB
  Фонетикоорфоэпические нормы или Нормы ударения и произношения. Нормы русского литературного языка. Нормы русского ударения. Нормы русского произношения.
40783. Анализ управления финансовой устойчивостью организации 204.03 KB
  Управление финансовой устойчивостью является важной задачей менеджмента на всем протяжении существования предприятия с целью обеспечить независимость от внешних контрагентов (внешняя финансовая устойчивость - устойчивость отвечать по своим долгам и обязательствам) и рациональность покрытия активов источниками их финансирования (внутренняя финансовая устойчивость).
40784. Цифроаналоговые и аналого-цифровые преобразователи 195.92 KB
  Цифроаналоговые и аналогоцифровые преобразователи Цифроаналоговые ЦАП и аналогоцифровые преобразователи АЦП являются неотъемлемой частью автоматических систем контроля управления и регулирования. Кроме того поскольку подавляющее большинство измеряемых физических величин являются аналоговыми а их обработка индикация и регистрация как правило осуществляются цифровыми методами ЦАП и АЦП нашли широкое применение в автоматических...
40787. Основные классификационные признаки микроконтроллеров 157.95 KB
  По набору команд и способу адресации: CISC процессоры RISC процессоры и VLIW процессоры. Классификация набору команд и способу адресации По данному функциональному признаку в современных микропроцессорах реализуются следующие варианты архитектур: CISCархитектура RISCархитектура VLIWархитектура CISC Complex Instruction Set Computer архитектура реализована во многих типах микропроцессоров выполняющих большой набор разноформатных команд с использованием многочисленных способов адресации. Они выполняют более 200 команд...