20361

Однополосная АМПЛИТУДНАЯ МОДУЛЯЦИЯ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Нелинейные искажения сигнала при амплитудной модуляции. Структура ОБП сигнала 20. Усиление ОБП сигнала в двухканалыюм усилителе 20. Формирование ОБП сигнала 20.

Русский

2013-07-25

54 KB

67 чел.

Лекция 20. Однополосная АМПЛИТУДНАЯ МОДУЛЯЦИЯ

20.1. Нелинейные искажения сигнала при амплитудной модуляции.

20.2. Однополосная модуляция

20.3. Структура ОБП сигнала

20.4. Усиление ОБП сигнала в двухканалыюм усилителе

20.5. Формирование ОБП сигнала

20.6. Контрольные вопросы

20.1. Нелинейные искажения сигнала при амплитудной модуляции

Причиной нелинейных искажений сигнала при амплитудной модуляции является нелинейность статической модуляционной характеристики (рис. 20.1). Количественно эти искажения определяются с помощью коэффициента нелинейных искажений:

,    (20.1)

где U1мод, U2мод, U3мод - 1, 2, 3-я и т.д. гармоники модулирующего сигнала.

Для получения удовлетворительного результата по разборчивости передаваемых речевых сообщений при проведении специальных артикуляционных испытаний необходимо иметь значение коэффициента Кнел<4-5%. Снизить значение Кнел и уложиться в указанную норму можно с помощью схемы автоматического регулирования по линеаризации процесса амплитудной модуляции. Структурная схема такого устройства приведена на рис. 20.1.

Рис. 20.1. Структурная схема устройства автоматического регулирования по линеаризации процесса амплитудной модуляции

В схеме происходит сравнение двух сигналов: входного, модулирующего и выходного, снимаемого с линейного амплитудного детектора. В результате сравнения сигнал ошибки Uош подается на регулируемый аттенюатор, с помощью которого вносятся предискажения во входной модулирующий сигнал, которые автоматически компенсируют все искажения сигнала при его дальнейших преобразованиях, тем самым снижая значение коэффициента Кнел.

20.2. Однополосная модуляция

Одной из особенностей амплитудной модуляции является неэкономное распределение мощности ВЧ генератора, большая часть которой. (67%) расходуется на несущие колебания, тогда как на долю боковых составляющих, в которых заложена информация о передаваемом сообщении, остается только 33 % мощности. Поэтому было предложено передавать не весь спектр AM колебания, а только одну боковую полосу - ОБП сигнал (рис. 20.2). Обсудим, какие преимущества и недостатки возникают при этом в системе радиосвязи.

Рассмотрим случай передачи тонального сигнала:

uмод(t) Uмодcost.    (20.2)

Для ВЧ сигнала при амплитудной модуляции получим:

u(t)=U0(1+mcost)cos0t,    (20.3)

где m=Uмод/U01 - коэффициент глубины амплитудной модуляции; 0 - частота несущих колебаний.

Выделив из AM сигнала (20.3), нижнюю боковую составляющую, получим:

uб.с(t)=0,5mU0cos(0)t).   (20.4)

При передаче сообщения, занимающего спектр от мин до макс, спектры AM сигнала и с одной боковой полосой (ОБП сигнал) представлены на рис. 20.2.

Рис. 20.2. Спектры AM сигнала и с одной боковой полосой (ОБП сигнал)

При передаче ОБП сигнала вся мощность РПДУ может расходоваться на боковую составляющую, поэтому вместо (20.4) запишем:

uб.с(t)=mU0cos(0)t).    (20.5)

Из проведенного анализа можно сделать следующие выводы:

– амплитуда ОБП сигнала (20.5) по сравнению с амплитудой боковой при AM сигнале (20.4) возрастает в два раза, что дает выигрыш по мощности в четыре раза;

– ширина спектра ОБП сигнала уже полосы спектра AM сигнала в два раза (рис. 20.2), что позволяет сузить полосу пропускания радиоприемника по промежуточной частоте и получить выигрыш в отношении сигнал-помеха по мощности также в два раза (мощность шумов в радиоприемнике пропорциональна его полосе пропускания по промежуточной частоте);

– согласно (20.5) в обычном радиоприемнике ОБП сигнал будет воспринят как несущее колебание со смещенной частотой и, следовательно, выделить переданное сообщение не удастся.

Данные выводы позволяют сделать следующее заключение:

– общий выигрыш по мощности при передаче сигнала ОБП по сравнению с AM составляет 8 раз или 9 дБ (например, вместо мощности 10-20%. РПДУ 1000 Вт при AM в случае ОБП достаточна мощность всего 125 Вт);

– в радиоприемнике необходимо восстановление несущих колебаний, иначе принять ОБП сигнал нельзя.

Такое восстановление несущих колебаний осуществляется или с помощью передачи специального так называемого пилот-сигнала, или путем передачи подавленной несущей, на которую расходуется небольшая (10-20%) мощность 10-20%. Восстанавливать частоту несущих колебаний в радиоприемнике необходимо с высокой точностью. Например, при передаче речевых сообщений точность такого восстановления должна быть менее 10 Гц, иначе принятое сообщение будет искажено.

20.3. Структура ОБП сигнала

Пусть вместо тонального сигнала передается некоторое сообщение с изменяющейся амплитудой и частотой сигнала, для которого запишем:

,   (20.6)

что позволяет ОБП сигнал представить в виде:

.   (20.7)

Из (20.7) следует, что ОБП сигнал есть сигнал с амплитудной и фазовой модуляцией. Поэтому в качестве тестового сигнала при однополосной модуляции может использоваться двухчастотный сигнал, который относится к числу сигналов с такой двойной модуляцией - амплитудной и фазовой. Подав на вход ВЧ усилительного тракта двухчастотный сигнал, по спектру выходного сигнала определяют линейные качества проверяемого устройства (рис. 20.3).

Рис. 20.3. Определение линейных качеств усилительного тракта двухчастотным сигналом

Для неискаженного усиления ОБП сигнала уровень побочных составляющих в выходном комбинационном спектре при 2-частотном входном сигнале должен быть менее - 35 дБ относительно основного сигнала, а точность восстановления частоты несущей - менее 10 Гц.

20.4. Усиление ОБП сигнала в двухканальном усилителе (схема Кана)

Получение малого уровня нелинейных искажений в ВЧ усилителях мощности является сложной технической задачей, связанной к тому же со снижением КПД радиопередатчика. В схеме двухканального усилителя удается разрешить данную проблему путем раздельного усиления двух сигналов, один из которых содержит информацию о фазовой модуляции, другой - об амплитудной (рис. 20.4).

Рис. 20.4. Схема двухканального усилителя для раздельного усиления сигналов с фазовой и амплитудной модуляцией

В канале 1 усиливается ВЧ сигнал с постоянной амплитудой, содержащий информацию о фазовой модуляции. Постоянство амплитуды сигнала обеспечивается в канале с помощью включенного на его входе амплитудного ограничителя. В канале 2 усиливается только огибающая сигнала - низкочастотный сигнал, содержащий информацию об амплитудной модуляции. После усиления до требуемой величины мощности сигналы с выходов обоих каналов перемножаются, вновь образуя сигнал ОБП.

20.5. Формирование ОБП сигнала

Самый простой и надежный способ формирования ОБП сигнала основан на подавлении несущей с помощью специального балансного смесителя и фильтрацией одной из боковых полос (рис. 20.5).

Рис. 20.5. Формирования ОБП сигнала с подавлением несущей

На выходе балансного смесителя образуются два сигнала: с суммарной и разностной частотой. С помощью полосового фильтра один из этих сигналов подавляется и на выходе всей схемы появляется сигнал только с верхней или нижней боковой полосой.

20.6. Контрольные вопросы

1. Что является причиной нелинейных искажений сигнала при амплитудной модуляции?

2. Что такое однополосная модуляция? В чем состоят ее преимущества?

3. Какова структура однополосного сигнала?

4. Как осуществляется формирование однополосного сигнала?

5. Как проверяются искажения сигнала при однополосной модуляции?

6. Как можно усиливать сигнал при однополосной модуляции?

5

Дмитриев В.Н. Лекция 20 по УГФС в СПС


 

А также другие работы, которые могут Вас заинтересовать

45338. Основные понятия искусственного интеллекта 40 KB
  Интеллектом называется способность мозга решать задачи путём приобретения запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам. Искусственный интеллект это одно из направлений информатики целью которого является разработка аппаратнопрограммных средств позволяющих пользователюнепрограммисту ставить и решать свои традиционно считающиеся интеллектуальными задачи общаясь с компьютером на ограниченном подмножестве естественного языка. Понятие интеллектуальной задачи...
45339. Знания как часть любой интеллектуальной системы 38 KB
  При этом возникает естественный вопрос что такое знания и чем они отличаются от обычных данных обрабатываемых компьютером. Знания являются более сложной категорией информации по сравнению с данными. Они описывают не только отдельные факты но и взаимосвязи между ними поэтому знания иногда называют структурированными данными.
45340. Проблемная область искусственного интеллекта 35 KB
  Для этого разрабатываются специальные модели представления знаний и языки для описания знаний выделяются различные типы знаний. Изучаются источники из которых система может брать знания и создаются процедуры и приёмы с помощью которых возможно приобретение знаний интеллектуальными системами. Проблема представления знаний в системах искусственного интеллекта чрезвычайно актуальна поскольку функционирование данных систем опирается на знания о проблемной области хранящиеся на компьютере.
45341. Проблема распознавания образов 67.5 KB
  В своей повседневной жизни человек настолько легко справляется с задачами распознавания что это считается само собой разумеющимся. В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. За обучением следует процесс распознавания новых объектов который характеризует действия уже обученной системы.
45342. Проблемы и перспективы нейронных сетей 48 KB
  Проблемы интерпретируемости приводят к снижению ценности полученных результатов работы сети а проблема размерности к очень жестким ограничениям на количество выходных нейронов в сети на количество рецепторов и на сложность структуры взаимосвязей нейронов с сети. уже сегодня искусственные нейронные сети используются во многих областях но прежде чем их можно будет применять там где на карту поставлены человеческие жизни или значительные материальные ресурсы должны быть решены важные вопросы касающиеся надежности их работы. Некоторые...
45343. Процедурные модели предоставления знаний 74.5 KB
  Здесь имя или порядковый номер продукции во множестве продукций хранящихся в памяти системы. Q сфера применения продукции описывающая предметную область или ситуацию. Это позволяет систематизировать продукции что облегчает работу с системой продукций. Р условие применимости ядра продукции.
45344. Технология разработки экспертных систем 36 KB
  К разработке экспертных систем привлекаются специалисты из разных предметных областей а именно: эксперты той проблемной области к которой относятся задачи решаемые системой; инженеры по знаниям являющиеся специалистами по разработке систем искусственного интеллекта; программисты осуществляющие реализацию экспертной системы. Инженеры по знаниям помогают экспертам выявить и структурировать знания необходимые для работы экспертной системы выполняют работу по представлению знаний выбирают методы обработки знаний проводят выбор...
45345. Архитектура системы работы со знаниями 48 KB
  Различие между уровнями заключается в языке применяемом для представления знаний. Для работы со знаниями на любом из этих уровней используются следующие базовые компоненты: база знаний; редактор базы знаний; база данных со своей СУБД; решатель; подсистема настройки и управления; подсистема объяснения; диалоговая подсистема. В некоторых источниках совокупность средств обеспечивающих работу со знаниями называют системой управления базой знаний СУБЗ по аналогии с СУБД.
45346. Персептрон Розенблатта 53 KB
  В первоначальных вариантах исполнения персептрона соединения идущие от сузлов формировались случайным образом еще в процессе конструирования системы поэтому они определяли некоторые случайные свойства изображения. Как и в пандемониуме при обучении персептрона вычислялись данные о ценности каждого аузла. Как аузлы так и рузлы персептрона представляли собой математические нейроны которые были рассмотрены ранее. Веса синапсов идущих к рузлам изменялись в процессе обучения персептрона.