20365

ОБЩИЕ ПРИНЦИПЫ ГЕНЕРИРОВАНИЯ И УСИЛЕНИЯ ВЧ И СВЧ КОЛЕБАНИЙ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

ОБЩИЕ ПРИНЦИПЫ ГЕНЕРИРОВАНИЯ И УСИЛЕНИЯ ВЧ И СВЧ КОЛЕБАНИЙ Классификация и физический механизм работы ВЧ и СВЧ генераторов Генератор на электровакуумном приборе Генератор на биполярном транзисторе Генератор на полевом транзисторе Генератор на диоде Клистронный генератор Генератор на лампе бегущей волны Время взаимодействия носителей заряда с электромагнитным полем Принципы синхронизма и фазировки носителей заряда с электромагнитным полем Мощность взаимодействия носителей заряда с электромагнитным полем 3. В основе работы всех типов...

Русский

2013-07-25

209 KB

76 чел.

Лекция 3. ОБЩИЕ ПРИНЦИПЫ ГЕНЕРИРОВАНИЯ И УСИЛЕНИЯ ВЧ И СВЧ КОЛЕБАНИЙ

  1.   Классификация и физический механизм работы ВЧ и СВЧ генераторов
    1.  Генератор на электровакуумном приборе
    2.  Генератор на биполярном транзисторе
    3.  Генератор на полевом транзисторе
    4.  Генератор на диоде
    5.  Клистронный генератор
    6.  Генератор на лампе бегущей волны
    7.  Время взаимодействия носителей заряда с электромагнитным полем
    8.  Принципы синхронизма и фазировки носителей заряда с электромагнитным полем
    9.  Мощность взаимодействия носителей заряда с электромагнитным полем

3.1. Классификация и физический механизм работы ВЧ и СВЧ генераторов

Основное назначение генератора состоит в преобразовании энергии источника постоянного тока в энергию ВЧ или СВЧ колебаний. Генераторы подразделяются на два основных типа:

- автогенераторы, работающие в режиме самовозбуждения или автоколебаний, частота которых определяется параметрами самого устройства;

- генераторы с внешним возбуждением, работающие в режиме усиления входного сигнала по мощности или умножения его частоты (рис. 3.1).

Рис. 3.1. Основные типы генераторов

В обоих типах генераторов используются одни и те же типы электронных приборов и физические принципы их работы можно рассматривать в рамках общей теории.

Известно большое число разнообразных электронных приборов - электровакуумных и полупроводниковых, применяемых в генераторах. В основе работы всех типов электронных приборов лежит общий физический принцип: взаимодействие потока движущихся носителей заряда с электромагнитным полем. Различие состоит в разном характере этого взаимодействия и в способах управления потоком носителей заряда. Основные электронные приборы, используемые в генераторах:

  •  электровакуумные приборы (триоды, тетроды и др.);
  •  полупроводниковые приборы (транзисторы биполярные и полевые, диоды (туннельные, диоды Ганна и лавинно-пролетные));
  •  клистроны;
  •  лампы бегущей волны;
  •  приборы магнетронного типа.

Работу различных типов электронных приборов объединяет физический принцип взаимодействия потока носителей заряда (сокращенно - потока) с электромагнитным полем (сокращенно - полем).

3.2. Генератор на электровакуумном приборе

Принцип устройства генератора с триодом приведен на рис. 3.2. Поток носителей зарядов (электронов) движется в приборе от катода к аноду, проходя сквозь управляющую сетку.

Управление этим потоком - электростатическое, с помощью сигнала, приложенного к сетке. Ток прибора возбуждает электромагнитное поле в колебательном контуре, включенном в анодную цепь триода. В генераторе следует выполнить соотношение , где  - частота сигнала, - время пролета электронов.

Рис. 3.2.

3.3. Генератор на биполярном транзисторе

В приборе, состоящем из двух р-п-переходов, происходит перенос, как основных носителей заряда, так и неосновных. Управление током прибора осуществляется за счет заряда неосновных носителей заряда (в транзисторе типа n-р-n ими являются электроны), накапливаемых в области базы. С помощью входного сигнала, приложенного между базой и эмиттером, происходит управление этим процессом. Затем под действием постоянного напряжения носители из области базы переносятся к коллектору, возбуждая электромагнитное поле в колебательном контуре, включенном в коллекторную цепь транзистора.

В транзисторном генераторе следует выполнить соотношение: , где  - частота сигнала  - время переноса носителей заряда из области базы к коллектору.

Рис. 3.3.

  1.  Генератор на полевом транзисторе

В полевом транзисторе происходит перенос только основных носителей заряда (обычно ими являются электроны) - от истока к стоку. Управление током в приборе осуществляется за счет воздействия электрического поля на поток основных носителей заряда, движущихся в полупроводниковом канале. Это управляющее поле, создаваемое внешним сигналом возбуждения, приложенным к затвору, направлено перпендикулярно потоку. Как и в предыдущем случае, в генераторе с полевым транзистором следует выполнить условие: , где  - частота сигнала;  - время переноса носителей заряда от истока к стоку.

Рис. 3.4.

  1.  Генератор на диоде

Среди полупроводниковых диодов, используемых в схемах ВЧ и СВЧ генераторов можно выделить: туннельный диод; диод Ганна и лавинно-пролетный диод.

Эквивалентные модели этих приборов можно представить в виде нелинейной реактивной и отрицательной активной проводимости. Благодаря последней, при подключении такого прибора к резонатору, возможна генерация или усиление СВЧ колебаний с частотой, определяемой из соотношения , где - время пролета носителей заряда - электронов или дырок - в пролетной части полупроводниковой структуры.

  1.  Клистронный генератор

Клистрон используется только в СВЧ диапазоне. В нем имеется два резонатора - входной, к которому подводится сигнал возбуждения, и выходной, с которого снимается сигнал, усиленный по мощности. Носители заряда - электроны - движутся в приборе от катода к коллектору, к которому приложено постоянное напряжение. Проходя сквозь зазор входного резонатора, поток электронов модулируется по скорости.

Рис. 3.5.

Затем в пространстве дрейфа прибора, расположенном между резонаторами, происходит преобразование одного вида модуляции потока по скорости в другой - по плотности. Усиленный по мощности поток электронов, проходя сквозь зазор выходного резонатора, возбуждает в нем электромагнитное поле. В клистронном генераторе взаимодействие потока с полем, происходящее в зазоре резонатора, носит кратковременный характер, но время пролета носителей от катода к коллектору , относительно велико. Поэтому значение параметра .

Помимо двухрезонаторного выпускаются многорезонаторные клистронные генераторы, имеющие больший коэффициент усиления по мощности.

3.7. Генератор на лампе бегущей волны

В лампе бегущей волны (ЛБВ) электромагнитная волна со скоростью света движется вокруг специальной спирали - замедляющей структуры, возбуждаемой СВЧ сигналом. Внутри спирали от катода к коллектору движется поток носителей заряда - электронов - со скоростью ,. Фазовая скорость  электромагнитной волны, вектор которой направлен вдоль спирали, на порядок меньше скорости света.

Рис. 3.6.

При этом добиваются следующего примерного равенства , благодаря чему происходит взаимодействие потока электронов с электромагнитной волной, движущейся в прямом направлении, которая увеличивает свою энергию по мере распространения. Увеличенный по мощности СВЧ сигнал снимается с противоположного от входа конца спирали.

Существует несколько разновидностей ЛБВ, в том числе и такие, в которых взаимодействие потока электронов происходит не с прямой, а с обратной электромагнитной волной. Подобные приборы называются лампами с обратной волной (ЛОВ).

В ЛБВ и ЛОВ имеет место длительное, непрерывное взаимодействие потока с полем и относительно большое время пролета носителей  от катода к коллектору. Поэтому у этих приборов, как и у клистрона, значение параметра .

Анализ работы различных электронных приборов позволяет выделить общие черты, свойственные всем типам ВЧ и СВЧ генераторов.

3.8. Время взаимодействия носителей заряда с электромагнитным полем

Как указывалось выше, в основе работы всех типов электронных приборов лежит общий физический принцип: взаимодействие потока движущихся носителей заряда с электромагнитным полем.

Обозначим время этого взаимодействия через . Так, в биполярном транзисторе под  следует понимать время переноса неосновных носителей заряда от эмиттера к коллектору, в полевом транзисторе - время переноса основных носителей заряда от истока к стоку, в электровакуумных лампах - время движения электронов от катода к аноду, в СВЧ лампах бегущей волны - время движения электронов вдоль спирали от катода к коллектору и т.д.

В зависимости от обобщенного параметра , где  - частота сигнала, электронные генераторные приборы можно разделить на три основные группы: 1) ; 2) ; 3) .

ВЧ генераторные приборы - электровакуумные приборы и транзисторы - относятся к первой группе; СВЧ полупроводниковые генераторные диоды - лавинно-пролетные и Ганна - ко второй, СВЧ электровакуумные приборы - к третьей.

В приборах первой группы при нарушении соотношения , т.е. при частоте , резко уменьшается их выходная мощность, коэффициент усиления и КПД. Этот недостаток преодолен в приборах третьей группы. Благодаря увеличению , т.е. длительному взаимодействию потока с полем, мощность СВЧ электровакуумных приборов существенно превышает мощность СВЧ полупроводниковых генераторов. Если удастся создать полупроводниковые структуры, в которых значение  будет увеличено без снижения частоты колебаний , то мощность полупроводниковых генераторов будет повышена.

3.9. Принцип синхронизма и фазировки носителей заряда с электромагнитным полем

Процессы усиления и генерации ВЧ и СВЧ колебаний сопровождаются двумя характерными явлениями. Первое связано с модуляцией потока носителей заряда по скорости и плотности (или только по плотности). В результате происходит синхронное изменение частот колебаний потока и электромагнитного поля, а также обмен энергией между ними. В этом равенстве или кратности частот колебаний потока и поля и заключается соблюдение принципа синхронизма.

Однако соблюдения одного принципа синхронизма недостаточно, поскольку генерация и усиление ВЧ и СВЧ колебаний, сопровождающиеся передачей энергии от потока полю, возможны только при торможении носителей заряда электромагнитным полем. Иначе говоря, перемещение носителей заряда под воздействием высокочастотного поля должно быть противоположно их движению за счет постоянного поля. В этом и заключается сущность принципа фазировки. Для его соблюдения необходимо иметь определенную разность фаз между векторами, характеризующими поток и поле, или между током i (t), наведенным во внешней цепи, и напряжением и(t) на электродах прибора. При торможении носителей заряда полем ток i (t) и напряжение и(t) должны находиться в противофазе.

3.10. Мощность взаимодействия носителей заряда с электромагнитным полем

Мощность взаимодействия между потоком носителей заряда и электромагнитным полем, определяет мощность, генерируемую электронным прибором.

Поток носителей заряда будем характеризовать током i(t), наведенным во внешней цепи, а электромагнитное поле - напряжением u(t) на электродах прибора. Из-за нелинейного характера этого взаимодействия полное использование по мощности электронных генераторных приборов имеет место при несинусоидальных формах тока и напряжения, которые представим в виде ряда Фурье:

;    (3.1)

,       (3.2)

где - постоянная составляющая тока;  - напряжение источника питания генератора.

Процесс взаимодействия потока носителей заряда с полем или электронного прибора с электрической цепью в установившемся режиме работы можно рассматривать по каждой гармонике сигнала. Мощность взаимодействия по 1-й гармонике

                           (3.3)

где комплексно-сопряженная амплитуда 1-й гармоники тока,  - комплексная амплитуда напряжения.

Из (3.3) для активной и реактивной составляющих мощности взаимодействия получим

, 

где  - фазовый угол между двумя векторами (рис. 3.8).

Рис. 3.7.

При  поток носителей зарядов отдает мощность электромагнитному полю или электронный прибор - электрической цепи.

При , наоборот, поле отдает мощность потоку зарядов и поэтому колебания в устройстве затухают, или вообще не возникают.

Неравенство  соблюдается при , т.е. при выполнении условия фазировки.

Мощность 1-й гармоники сигнала, передаваемая в активную нагрузку:

,                               (3.4)

где  - разность фаз согласно рис. 3.7.

В выражении (3.3) реактивная составляющая мощности взаимодействия  характеризует обмен энергией между потоком и полем по 1-й гармонике сигнала или между электронным прибором и электрической цепью.

Мощность, потребляемая электронным прибором:

                                                      (3.5)

С учетом (3.4) и (3.5) КПД генератора

Значение КПД генератора зависит от типа электронного прибора, частоты и мощности усиливаемого сигнала и колеблется от 90% в нижней части ВЧ диапазона до 3 - 5% - в верхней части СВЧ диапазона. Мощность генераторных приборов U колеблется от десятков мегаватт в импульсном режиме работы до долей ватта в непрерывном режиме.

Контрольные вопросы

  1.  В чем состоит назначение генератора высокочастотных колебаний?
  2.  Чем отличается генератор с внешним возбуждением от автогенератора?
  3.  Чем отличаются друг от друга разные типы электронных приборов?
  4.  В чем состоит принцип работы генератора с биполярным и полевым транзистором?
  5.  В чем состоит принцип работы триодного генератора?
  6.  В чем состоит принцип работы клистронного генератора?
  7.  В чем состоит принцип работы генератора на лампе бегущей волны?
  8.  В чем состоит принцип синхронизма?
  9.  В чем состоит принцип фазировки?

9. Что такое время и мощность взаимодействия?

10. Как определяются активная и реактивная мощности взаимодействия?

11. Как определяется КПД генератора?

7


 

А также другие работы, которые могут Вас заинтересовать

43843. Моделирование на ARIS бизнес-процессов с учётом требований безопасности 1.08 MB
  Темой дипломной работы является: “Моделирование на RIS бизнеспроцессов с учётом требований безопасности. Объектом исследования являются∙ инструментальная среда RIS регламент Центра сертификации ключей ЗАО Инфраструктура открытых ключей. Цели и задачи исследования ознакомление с принципами работы инструментальной среды RIS способами моделирования бизнеспроцессов. моделирование регламента Центра сертификации ключей ЗАО Инфраструктура открытых ключей с учётом требований безопасности...
43844. Правове регулювання укладання та виконання господарських договорів 649.5 KB
  Загальна характеристика зобовязальних правовідносин Поняття та склад зобовязання Норми які регулюють зобовязання становлять один із найважливіших інститутів цивільного права зобовязальне право. Норми зобовязального права є найбільш значною частиною цивільного законодавства. Система зобовязального права складається із інститутів Загальної частини та інститутів Особливої частини. Загальна частина включає: поняття зобовязання сторони в зобовязанні; виконання зобовязання; забезпечення виконання зобовязання; припинення...
43845. Пластиковые карты, как один из видов банковского продукта на примере АКБ «Московский залоговый банк» 4.93 MB
  Мировая практика проведения расчетов по кредитным картам свидетельствует о том, что использование карты значительно упрощает процесс покупки товара или услуги, равно как и хранения и защиты своих сбережений. Пластиковая карта позволяет ее владельцу оперативно и без проблем получать наличные в любое время суток, пользоваться разнообразными скидками при покупке товаров и услуг, контролировать свои расходы за определенные периоды времени.
43846. Реконструкция схемы электроснабжения “Черемшанка” Курагинского района 1.38 MB
  Коммунально – бытовой сектор поселка “Черемшанка” обслуживают две трансформаторных подстанций 10/0,38 кВ. Потребительские воздушные линии выполнены проводом АС – 35. Общее количество домов составляет 160 штук и в них проживает 944 человека. Кроме этого, в селе имеются социально – культурные учреждения: клуб, магазины, школа, больница, сельский совет и т. д.
43847. Оптимізація транспортних мереж NGN на основі технології IP/MPLS для боротьби з пульсаціями мультисервісного трафіку та досягнення заданих показників якості обслуговування 1.67 MB
  1 АНАЛІЗ ПОБУДОВИ ТРАНСПОРТНОЇ МЕРЕЖІ НА ОСНОВІ ТЕХНОЛОГІЇ MPLS.2 Особливості побудови транспортної мережі NGN.3 Маршрутизація в мережі з комутацією по міткам. 2 ОБҐРУНТУВАННЯ ВИБОРУ МЕТОДА ОПТИМІЗАЦІЇ ТРАНСПОРТНОЇ МЕРЕЖІ ІР MPLS.
43848. Hасчет характеристик направленности вибраторных антенн в присутствии щелевого экрана 4.46 MB
  Моделирование вибраторных антенны с использованием программного пакета XFDTD. Геометрия исследуемой антенны. Исследование влияния металлического экрана с отверстием на диаграмму направленности антенны. Исследование влияния плоского металлического экрана с отверстием на диаграмму направленности антенны.
43849. Aвтоматизация теплового пункта 1.71 MB
  обеспечивая в каждом помещении наиболее комфортные условия для персонала по температуре влажности воздуха и освещенности; получать объективную информацию о работе и состоянии всех систем и своевременно сообщать диспетчерам о необходимости вызова специалистов по сервисному обслуживанию в случае отклонения параметров любой из систем от штатных показателей; контролируя максимально возможное число параметров оборудования точек контроля в здании и показателей загруженности систем перераспределять энергоресурсы между системами обеспечивая...
43850. Создание информационной базы и программы расчета доходной части бюджета территории на примере города Харьков, Украина 1.04 MB
  В современных условиях местного самоуправления местными органами большое значение имеет правильное и достаточно оптимальное планирование местного бюджета т. Основным принципом создания и ведения бюджета Украины стал бессистемный централизм пришедший на смену жесткой административной системе. Поэтому появилась...
43851. Право собственности 401.5 KB
  Право собственности граждан. Понятие и виды права собственности граждан. Субъекты права собственности граждан. Объекты права собственности граждан.