20367

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ широкополосных генераторов

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Согласующие электрические цепи в широкополосных ВЧ генераторах 11. Согласующие электрические цепи в широкополосных ВЧ генераторах Предельная возможность согласования генератора с нагрузкой в полосе частот. На одной частоте можно произвести оптимальное согласование генератора с нагрузкой при любых параметрах последней выполнив условие 5. при создании широкополосного генератора.

Русский

2013-07-25

63 KB

36 чел.

Лекция 11. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ широкополосных генераторов

11.1. Согласующие электрические цепи в широкополосных ВЧ генераторах

11.2. Транзисторный усилитель с согласующими цепями лестничного типа.

11.3. Транзисторный усилитель с ВЧ трансформаторами типа «длинной линии».

11.4. Контрольные вопросы

11.1. Согласующие электрические цепи в широкополосных ВЧ генераторах

Предельная возможность согласования генератора с нагрузкой в полосе частот. На одной частоте можно произвести оптимальное согласование генератора с нагрузкой при любых параметрах последней, выполнив условие (5.13). Однако задача существенно усложняется при необходимости согласования с комплексной нагрузкой в полосе частот без перестройки элементов электрической цепи, т.е. при создании широкополосного генератора. Остановимся на данной проблеме более подробно, обратившись к схеме, представленной на рис. 11.1.

Рис. 11.6

В качестве согласующего устройства в схеме используется реактивный четырехполюсник взаимного типа, т.е. цепь, состоящая из реактивных элементов, активными потерями в которых можно пренебречь. Уравнение баланса мощностей в схеме имеет вид:

,    (11.1)

где Рг.ном=(Ei)2/8Ri - номинальная мощность генератора (см. разд. 5.5); Рн - активная мощность, передаваемая в нагрузку и I расходуемая в сопротивлении R; Ротр - мощность, отражаемая со входа четырехполюсника и поглощаемая внутренним сопротивлением генератора.

Согласно (11.1) потери, связанные с передачей мощности от генератора в нагрузку, возникают только по причине отражения сигнала от входа четырехполюсника. Уравнение (11.1) представим в виде:

,     (11.2)

где КР=Рн/Рг.ном1 - коэффициент передачи цепи по мощности; |Г|2=Ротр/Рг.ном1 - коэффициент отражения цепи по входу.

При идеальном согласовании, т.е. при отсутствии отражения и полной передачи номинальной мощности генератора в нагрузку, КР=1 и Г=0. Доказано, что при комплексной нагрузке в полосе частот f обеспечить идеальное согласование невозможно. Предельные возможности такого согласования при нагрузке, составленной из параллельно включенных сопротивления R и емкости С или последовательно включенных сопротивления R и индуктивности L (см. рис. 11.6), оцениваются следующим интегральным неравенством:

,     (11.3)

где Т=RC или Т=L/R - постоянная времени цепи нагрузки.

Приняв внутри полосы согласования f значение коэффициента отражения Г=Гв и вне ее Г=1, из (8.10) получим:

,     (11.4)

где Q=2nf0L/R или Q=2nf0CRдобротность нагрузки.

Из (11.1), (11.2) и (11.4) для коэффициента потерь или затухания согласующей цепи в децибелах получим:

.  (11.5)

Графики функции (11.5) при Q=2; 5; 10 построены на рис. 11.7.

Рис. 11.7

Из (11.5) следует, что три параметра - полоса пропускания согласующей цепи Δƒ нагрузка, характеризуемая добротностью Q, и потери, определяемые одним из трех параметров КР, В или Г, - жестко связаны между собой. Эта связь наглядно прослеживается с помощью графиков (рис. 11.7): чем больше добротность нагрузки Q и шире полоса пропускания Δƒ, тем больше затухание в согласующем устройстве за счет отражения. Практически реализовать предельно возможный случай согласования, вытекающий из (11.5), не удается, так как для этого требуется электрическая цепь с бесконечно большим числом элементов. При конечном числе элементов можно только приблизиться к теоретическому пределу. Поэтому практически затухание в согласующем устройстве любой конфигурации больше, чем это следует из графиков на рис. 11.7.

11.2. Широкополосный транзисторный усилитель с согласующими цепями лестничного типа.

Одной из широкополосных согласующих цепей является схема лестничного типа, составленная из Z-C элементов. Схема ВЧ транзисторного усилителя с такими цепями приведена на рис. 11.8.

Рис. 11.8

Коэффициент усиления по мощности ВЧ генератора определяется следующим образом:

,

где Kвх.ц(ƒ)≤1 - коэффициент передачи по мощности входной согласующей цепи; KPT(ƒ) - собственный коэффициент усиления транзистора; Kвых.ц(ƒ) ≤1 - коэффициент передачи мощности выходной согласующей цепи.

В широкополосном усилителе необходимо получить постоянство коэффициента KР(ƒ) в требуемой полосе частот Δƒ=(f2–ƒ1) с учетом того, что собственный коэффициент усиления транзистора KPT(ƒ) уменьшается с повышением частоты сигнала. Следовательно, для обеспечения Kp(ƒ)=const зависимости для коэффициентов Kвх.ц(ƒ) и Kвых.ц(ƒ)  должны иметь, противоположный характер (рис. 11.9).

Рис. 11.9.

Расчет схемы рис. 11.8 проводится на компьютере по программе, с помощью которой осуществляется синтез входной и выходной электрических цепей для получения необходимых зависимостей Kвх.ц(ƒ) и Kвых.ц(ƒ) в заданной полосе частот, при которых KP(f)=const.

Помимо схемы, приведенной на рис. 11.8, возможны также ее модификации с цепями лестничного типа иной конфигурации.

11.3. Широкополосный транзисторный усилитель с ВЧ трансформаторами типа «длинной линии» (ТДЛ).

Трансформатор типа «длинной линии» (ТДЛ) представляет собой тороидальный ферритовый магнитопровод, на котором располагается одна или несколько линий передачи, выполненных в виде скрученных проводов или на основе коаксиальных и полосковых линий. Наиболее простым вариантом является ТДЛ с одной линией передачи (рис. 11.10, а).

Эквивалентную схему ТДЛ в области низких частот можно представить в виде трансформатора обычного типа, а на высоких частотах - как длинную линию с волновым сопротивлением р (рис. 11.10, б). Длина линии определяется соотношением:

,

где λ - длина волны; μф>>1 - магнитная проницаемость феррита.

В зависимости от способа соединения концов обмотки с помощью ТДЛ можно получить коэффициент трансформации по сопротивлению 1:1 или 1:4.

Второй случай соединения и соответствующие ему эквивалентные схемы приведены на рис. 11.10.

Рис. 11.10.

Пример схемы широкополосного транзисторного генератора двухтактного типа с ТДЛ приведен на рис. 11.11.

Рис. 11.11.

Волновые сопротивления ТДЛ обозначены на схеме. Трансформаторы Т1 и Т4 служат для перехода от симметричной схемы к несимметричной. Входное сопротивление каждого транзистора должно быть близким к 2, выходное - к 1.

В заключение приведем некоторые рекомендации, связанные с проектированием и эксплуатацией мощных ВЧ транзисторных генераторов.

1. В генераторе необходимо обеспечить хороший отвод тепла от транзистора, для чего последний крепят к теплоотводящему радиатору.

2. Необходимо правильно выбрать дроссели и блокировочные конденсаторы, параметры которых могут повлиять на устойчивость работы генератора в области низких частот. Иногда для повышения устойчивости дроссели шунтируют резисторами.

3. Необходимо правильно выбрать рабочую точку транзистора, с учетом рабочего диапазона температур. Поскольку при изменении температуры внешней среды характеристики транзистора сдвигаются, то применяют методы термостабилизации режима работы. Сущность данного приема состоит в применении термосопротивлений в цепи базы, с помощью которых при изменении температуры соответствующим образом сдвигается и рабочая точка, обеспечивая неизменность электрического режима работы транзистора.

4. Для исключения пробоя p-n-переходов транзистора все значения пиковых напряжений в генераторе должны быть меньше предельно допустимых значений с запасом. Данное правило распространяется и на переходный режим работы при включении и выключении генератора.

5. Недопустимо даже кратковременное отключение нагрузки от генератора, что приведет к резкому возрастанию мощности тепла, рассеиваемой прибором. Для исключения такой ситуации в генераторах применяют специальные схемы защиты.

6. При требуемой мощности генератора, превышающей мощность одного транзистора, применяют суммирование сигналов.

Контрольные вопросы

1. Как изменяется полоса пропускания согласующей электрической цепи при увеличении добротности нагрузки?

2. Нарисуйте электрическую цепь лестничного типа.

3. Как определяется коэффициент усиления по мощности широкополосного генератора?

4. Как устроен трансформатор типа длинной линии (ТДЛ)?

5. Нарисуйте эквивалентные схемы трансформатора типа «длинной линии».

6. Нарисуйте схему транзисторного генератора с ТДЛ.


 

А также другие работы, которые могут Вас заинтересовать

21859. Факторы, определяющие формы проявления геомеханических процессов 272.5 KB
  Состав строение и физические свойства горных пород. Структурные особенности массивов горных пород. Естественное напряженное состояние массивов пород. Основным предметом изучения в геомеханике является массив горных пород и механические процессы происходящие в нём.
21860. Управление геомеханическими процессами при проведении капитальных выработок и строительстве подземных сооружений 2.82 MB
  Управление геомеханическими процессами при проведении капитальных выработок и строительстве подземных сооружений. Задачи управления горным давлением и основные принципы обеспечения устойчивости горных выработок. Закономерности изменения напряженного состояния приконтурного массива выработок при их различных положениях в пространстве относительно поля напряжений в массиве пород и преобладающих структурных неоднородностях. Выбор и обоснование оптимальных форм и размеров поперечных сечений рациональной ориентации выработок.
21861. Особенности напряжённо-деформированного состояния массива пород вокруг очистных выработок 266 KB
  Особенности напряжённодеформированного состояния массива пород вокруг очистных выработок. Характерные виды проявлений горного давления в очистных выработках. Взаимное влияние очистных выработок при разработке обособленных и сближенных пластов и жил. Основные принципы выбора способа управления горным давлением при ведении очистных работ.
21862. Управление геомеханическими процессами при системах с естественным поддержанием выработанного пространства 848 KB
  В этой группе систем разработки поддержание очистного пространства осуществляется за счет естественной устойчивости обнажений массивов полезного ископаемого и вмещающих пород. Следует заметить что данная группа систем разработки применяется как правило в условиях устойчивых массивов пород. Очевидно в такой постановке вопроса устойчивое состояние любых элементов системы разработки определяется соотношением действующих в массиве пород напряжений и деформационнопрочностных свойств пород слагающих рассматриваемый элемент. Если конкретно...
21863. Управление геомеханическими процессами при системах с искусственным поддержанием выработанного пространства: с закладкой выработанного пространства 344 KB
  Для поддержания подрабатываемого массива горных пород выработанное пространство вслед за выемкой руды или через некоторое время заполняется закладочным материалом. Для повышения плотности создаваемого искусственного массива специально подбираются крупность кусков и фракционный состав смесей. Для достижения высокой плотности закладочного массива рекомендуется принимать максимальный размер куска не более 250 300 мм при этом содержание мелких частиц должна быть до 10 15 а фракция от О до 20 мм до 30. Усадка закладочного массива в первом...
21864. Организация процесса разработки управленческого решения 95.5 KB
  Демократизация разработки решений; 5.1 Логические схемы деятельности в процессе разработки решения Методы принятия решений направленных на достижение намеченных целей могут быть различными: 1 метод основанный на интуиции управляющего которая обусловлена наличием у него ранее накопленного опыта и суммы знаний в конкретной области деятельности что помогает выбрать и принять правильное решение; 2 метод основанный на понятии здравого смысла когда управляющий принимая решения обосновывает их последовательными...
21865. Целевая ориентация управленческих решений 126 KB
  Взаимосвязи в системе целей Фундаментальные цели определяют общую направленность деятельности организации являются исходным пунктом построения дерева целей организации. Эти цели не всегда ясны даже высшим менеджерам а тем более персоналу. Тактические цели: обеспечивают перевод стратегических целей в термины и показатели которые могут быть использованы при принятии решений; имеют своей основой стратегические цели направленные на их поддержку; более конкретны чем стратегические цели. Операционные цели являются еще более...
21866. Анализ внешней среды и ее влияние на реализацию альтернатив 71 KB
  С этого периода связь фирмы с внешней средой стала рассматриваться как одна из главнейших ее характеристик. Внешняя среда фирмы предприятия или организации это совокупность активных субъектов и сил действующих за их пределами не поддающихся контролю со стороны фирмы предприятия или организации и влияющих на возможности фирмы предприятия или организации устанавливать и поддерживать отношения с субъектами внешнего окружения для достижения своих стратегических целей. Внешняя среда фирмы достаточно разнородна.2 Среда прямого воздействия К...
21867. Условия неопределенности и риска 55.5 KB
  Условия неопределенности и риска.3 Виды и условия предпринимательского риска; 8. По критерию определенности информации различают решения принятые в условиях: а определенности б вероятностной определенности риска в неопределенности ненадежности. В отечественной экономике на данном этапе ее развития риск особенно вероятен вследствие неуменьшающейся неопределенности политической ситуации неустойчивости экономической среды отсутствия гарантии получения ожидаемого результата Природа риска в рыночной экономике...