20428

Гомогенные мультикомпьютерные системы

Доклад

Информатика, кибернетика и программирование

Понятно что и тут необходима какаято схема соединения но поскольку нас интересует только связь между процессорами объем трафика будет на несколько порядков ниже чем при использовании сети для поддержания трафика между процессорами и памятью. В мультикомпьютерных системах с шинной архитектурой процессоры соединяются при помощи разделяемой сети множественного доступа например FastEthernet. Скорость передачи данных в сети обычно равна 100 Мбит с. В коммутируемых мультикомпьютерных системах сообщения передаваемые от процессора к процессору...

Русский

2013-07-25

33 KB

4 чел.

3

1.3.2. Гомогенные мультикомпьютерные системы

В отличие от мультипроцессоров построить мультикомпьютерную систему относительно несложно. Каждый процессор напрямую связан со своей локальной памятью. Единственная оставшаяся проблема — это общение процессоров между собой. Понятно, что и тут необходима какая-то схема соединения, но поскольку нас интересует только связь между процессорами, объем трафика будет на несколько порядков ниже, чем при использовании сети для поддержания трафика между процессорами и памятью.

Сначала мы рассмотрим гомогенные мультикомпьютерные системы. В этих системах, известных под названием системных сетей (System Area Networks, SAN), узлы монтируются в большой стойке и соединяются единой, обычно высокоскоростной сетью. Как и в предыдущем случае, нам придется выбирать между системами на основе шинной архитектуры и системами на основе коммутации.

В мультикомпьютерных системах с шинной архитектурой процессоры соединяются при помощи разделяемой сети множественного доступа, например FastEthernet. Скорость передачи данных в сети обычно равна 100 Мбит/с. Как и в случае мультипроцессоров с шинной архитектурой, мультикомпьютерные системы с шинной архитектурой имеют ограниченную масштабируемость. В зависимости от того, сколько узлов в действительности нуждаются в обмене данными, обычно не следует ожидать высокой производительности при превышении системой предела в 25—100 узлов.

В коммутируемых мультикомпьютерных системах сообщения, передаваемые от процессора к процессору, маршрутизируются в соединительной сети в отличие от принятых в шинной архитектуре широковещательных рассылок. Было предложено и построено множество различных топологий. Две популярные топологии — квадратные решетки и гиперкубы — представлены на рис. 1.7. Решетки просты для понимания и удобны для разработки на их основе печатных плат. Они прекрасно подходят для решения двухмерных задач, например задач теории графов или компьютерного зрения (глаза робота, анализ фотографий).

Гиперкуб (hypercube) представляет собой куб размерности n. Гиперкуб, показанный на рис. 1.7, б, четырехмерен. Его можно представить в виде двух обычных кубов, с 8 вершинами и 12 ребрами каждый. Каждая вершина — это процессор. Каждое ребро — это связь между двумя процессорами. Соответствующие вершины обоих кубов соединены между собой. Для расширения гиперкуба в пятое измерение мы должны добавить к этой фигуре еще один комплект из двух связанных кубов, соединив соответствующие вершины двух половинок фигуры. Таким же образом можно создать шестимерный куб, семимерный и т. д.

Коммутируемые мультикомпьютерные системы могут быть очень разнообразны. На одном конце спектра лежат процессоры с массовым параллелизмом (Massively Parallel Processors, МРР), гигантские суперкомпьютеры стоимостью во много миллионов долларов, содержащие тысячи процессоров. Нередко они собираются из тех же процессоров, которые используются в рабочих станциях или персональных компьютерах. От других мультикомпьютерных систем их отличает наличие патентованных высокоскоростных соединительных сетей. Эти сети проектируются в расчете на малое время задержки и высокую пропускную способность. Кроме того, предпринимаются специальные меры для защиты системы от сбоев. При наличии тысяч процессоров каждую неделю как минимум несколько будут выходить из строя. Нельзя допустить, чтобы поломка одного из них приводила к выводу из строя всей машины.

На другом конце спектра мы обнаруживаем популярный тип коммутируемых микрокомпьютеров, известных как кластеры рабочих станций (Clusters Of Workstations, COW), основу которых составляют стандартные персональные компьютеры или рабочие станции, соединенные посредством коммерческих коммуникационных компонентов, таких как карты Myrinet. Соединительные сети — вот то, что отличает COW от МРР. Кроме того, обычно не предпринимается никаких особых мер для повышения скорости ввода-вывода или защиты от сбоев в системе. Подобный подход делает COW проще и дешевле.


 

А также другие работы, которые могут Вас заинтересовать

78878. Природа ценности и их роль в социально-гуманитарных науках 14.19 KB
  Риккертом теория ценностей которого включает ряд моментов значимых для понимания ценностей в науках о культуре и историческом знании. Философ исходит из того что ценности это самостоятельное царство соответственно мир состоит не из субъектов и объектов но из действительности как изначальной целостности человеческой жизни и ценностей. Признание самостоятельного мира ценностей это метафорически выраженное стремление понять утвердить объективную внесубъектную природу ценностей способ выражения его независимости от обыденной...
78879. Предмет философии науки. Исследование общих закономерностей по производству, проверке и обоснованию научного знания на разных этапах развития общества 41 KB
  Что такое наука Чем отличается научное знание от мифа и религиозных представлений В чем ценность науки Как она развивается Какими методами пользуются ученые Попытки найти ответы на эти и другие вопросы связанные с пониманием науки как особой сферы человеческой деятельности привели к возникновению в рамках аналитической философии особого направления философии науки которая сформировалась в XX в. на стыке трех областей: самой науки ее истории и философии. Трудно указать тот момент когда возникает философия науки как особая сфера...
78880. Проблема генезиса науки и способы классификации основных этапов ее эволюции 29.5 KB
  Проблема генезиса науки и способы классификации основных этапов ее эволюции В античности и средние века в основном имело место философское познание мира. В античный и средневековый периоды существовали лишь элементы предпосылки науки но не сама наука в собственном смысле слова которая возникает только в Новое время. Онито и образуют первоначальное целое единой науки как таковой науки вообще в отличие от философии. В понимании генезиса возникновения науки в истории и философии науки сложились два противоположных подхода.
78881. Донаучное знание и его особенности 27.5 KB
  Донаучное знание и его особенности Вненаучное знание не является чьейто выдумкой или фикцией. Вненаучное знание разрозненное несистематическое знание которое находится в противоречии с существующей картиной мира. Одна из форм вненаучного знания это донаучное знание. Донаучное знание выступающее прототипом предпосылочной базой научного.
78882. Рождение античной науки 55.5 KB
  Так в древнеегипетской цивилизации носителями знаний были жрецы в зависимости от уровня посвящения обладавшие той или иной суммой знаний. Знания существовали в религиозномистической форме и только жрецы могли читать священные книги и как носители практических знаний имели власть над людьми. Предпосылкой возникновения научных знаний многие исследователи истории науки считают миф. Особенности греческого мышления которое было рациональным теоретическим что в данном случае равносильно созерцательному наложили отпечаток на формирование...
78883. Наука в условиях европейского Средневековья 28.5 KB
  Большое значение для развития науки имело открытие университетов. Другой предпосылкой будущего расцвета науки послужило развитие техники. Наступала новая эпоха в развитии цивилизации и науки. Однако в сфере науки не было совершено прорыва.
78884. Становление науки классического типа 30.5 KB
  Фарадей обнаружил взаимосвязь между электричеством и магнетизмом, ввел понятия электрического и магнитного полей, выдвинул идею о существовании электромагнитного поля. Максвелл создал электродинамику и статистическую физику, построил теорию электромагнитного поля, предсказал существование электромагнитных волн, выдвинул идею об электромагнитной природе света.
78885. Проблема методов познания в философии Нового времени 29.5 KB
  Проблема методов познания в философии Нового времени Наука находится в центре внимания главных философских направлений XVII XVIII вв. Основные области философии этого времени онтология и гносеология. ontos сущее и logos слово понятие учение учение о бытии как таковом знании об истинно существующем раздел философии изучающий фундаментальные принципы бытия наиболее общие сущности и категории сущего Гносеология позже стал употребляться термин эпистемология в переводе с греческого теория познания раздел философии в...
78886. Особенности неклассической науки 31 KB
  Особенности неклассической науки Опора науки Нового времени на эксперимент развитие механики заложили фундамент для установления связи науки с производством. В результате разрешения кризиса произошла новая научная революция начавшаяся в физике и охватившая все основные отрасли науки Она связана прежде всего с именами МЛланка 1858 1947 и А. Механическая картина мира классической науки была рассчитана на относительно малые скорости которые абсолютно не укладывались во внутреннюю логику новых...