20443

Введение в UML

Доклад

Информатика, кибернетика и программирование

Модель физического уровня в языке UML отражает компонентный состав проектируемой системы с точки зрения ее реализации на аппаратурной и программной платформах конкретных производителей. Сущности в UML В UML определены четыре типа сущностей: структурные поведенческие группирующие и аннотационные. Структурные сущности это имена существительные в моделях на языке UML.

Русский

2013-07-25

54.5 KB

7 чел.

16 Введение в UML

Принципы моделирования

Использование языка UML основывается на следующих общих принципах моделирования:

  •  абстрагирование - в модель следует включать только те элементы проектируемой системы, которые имеют непосредственное отношение к выполнению ей своих функций или своего целевого предназначения. Другие элементы опускаются, чтобы не усложнять процесс анализа и исследования модели; 
  •  многомодельность - никакая единственная модель не может с достаточной степенью точности описать различные аспекты системы. Допускается описывать систему некоторым числом взаимосвязанных представлений, каждое из которых отражает определенный аспект её поведения или структуры; 
  •  иерархическое построение – при описании системы  используются различные уровни абстрагирования и детализации в рамках фиксированных представлений. При этом первое представление системы  описывает её в наиболее общих чертах и является представлением концептуального уровня, а последующие уровни раскрывают различные аспекты системы с возрастающей степенью детализации вплоть до физического уровня. Модель физического уровня в языке UML отражает компонентный состав проектируемой системы с точки зрения ее реализации на аппаратурной и программной платформах конкретных производителей. 

Сущности в UML 

В UML определены четыре типа сущностей: структурные, поведенческие, группирующие и аннотационные. Сущности являются основными объектно-ориентированными элементами языка, с помощью которых создаются модели.

Структурные сущности - это имена существительные в моделях на языке UML. Как правило, они представляют статические части модели, соответствующие концептуальным или физическим элементам системы. Примерами структурных сущностей являются «класс», «интерфейс», «кооперация», «прецедент», «компонент», «узел», «актер».

 Поведенческие сущности являются динамическими составляющими модели UML. Это глаголы, которые описывают поведение модели во времени и в пространстве. Существует два основных типа поведенческих сущностей:

  •  взаимодействие - это поведение, суть которого заключается в обмене сообщениями между объектами в рамках конкретного контекста для достижения определенной цели;
  •  автомат - алгоритм поведения, определяющий последовательность состояний, через которые объект или взаимодействие проходят в ответ на различные события.

Группирующие сущности являются организующими частями модели UML. Это блоки, на которые можно разложить модель. Такая первичная сущность имеется в единственном экземпляре - это пакет.

Пакеты представляют собой универсальный механизм организации элементов в группы. В пакет можно поместить структурные, поведенческие и другие группирующие сущности. В отличие от компонентов, которые реально существуют во время работы программы, пакеты носят чисто концептуальный характер, то есть существуют только в процессе разработки.

Аннотационные сущности – это пояснительные части модели UML: комментарии для дополнительного описания, разъяснения или замечания к любому элементу модели. Имеется только один базовый тип аннотационных элементов - примечание. Примечание используют, чтобы снабдить диаграммы комментариями или ограничениями, выраженными в виде неформального или формального текста.

Отношения в UML 

В языке UML определены следующие типы отношений: зависимость, ассоциация, обобщение и реализация. Эти отношения являются основными связующими конструкциями UML и также как сущности применяются для построения моделей.

Зависимость (dependency) - это семантическое отношение между двумя сущностями, при котором изменение одной из них, независимой, может повлиять на семантику другой, зависимой.

Ассоциация (association) - структурное отношение, описывающее совокупность смысловых или логических связей между объектами.

Обобщение (generalization) - это отношение, при котором объект специализированного элемента (потомок) может быть подставлен вместо объекта обобщенного элемента (предка). При этом, в соответствии с принципами объектно-ориентированного программирования, потомок (child) наследует структуру и поведение своего предка (parent).

Реализация (realization) является семантическим отношением между классификаторами, при котором один классификатор определяет обязательство, а другой гарантирует его выполнение. Отношение реализации встречаются в двух случаях:

  •  между интерфейсами и реализующими их классами или компонентами;
  •  между прецедентами и реализующими их кооперациями. 

 Общие механизмы UML 

Для точного описания системы в UML используются, так называемые, общие механизмы:

  •  спецификации (specifications);
  •  дополнения (adornments);
  •  деления (common divisions);
  •  расширения (extensibility mechanisms).

 UML является не только графическим языком. За каждым графическим элементом его нотации стоит спецификация, содержащая текстовое представление соответствующей конструкции языка. Например, пиктограмме класса соответствует спецификация, которая описывает его атрибуты, операции и поведение, хотя визуально, на диаграмме, пиктограмма часто отражает только малую часть этой информации. Более того, в модели может присутствовать другое представление этого класса, отражающее совершенно иные его аспекты, но, тем не менее, соответствующее спецификации. Таким образом, графическая нотация UML используются для визуализации системы, а с помощью спецификаций описывают ее детали.

Практически каждый элемент UML имеет уникальное графическое изображение, которое дает визуальное представление самых важных его характеристик. Нотация сущности «класс» содержит его имя, атрибуты и операции. Спецификация класса может содержать и другие детали, например, видимость атрибутов и операций, комментарии или указание на то, что класс является абстрактным. Многие из этих деталей можно визуализировать в виде графических или текстовых дополнений к стандартному прямоугольнику, который изображает класс.

При моделировании объектно-ориентированных систем существует определенное деление представляемых сущностей.

Во-первых, существует деление на классы и объекты. Класс - это абстракция, а объект - конкретное воплощение этой абстракции. В связи с этим, практически все конструкции языка характеризуются двойственностью «класс/объект». Так, имеются прецеденты и экземпляры прецедентов, компоненты и экземпляры компонентов, узлы и экземпляры узлов. В графическом представлении для объекта принято использовать тот же символ, что и для класса, а название подчеркивать.

Во-вторых, существует деление на интерфейс и его реализацию. Интерфейс декларирует обязательства, а реализация представляет конкретное воплощение этих обязательств и обеспечивает точное следование объявленной семантике. В связи с этим, почти все конструкции UML характеризуются двойственностью «интерфейс/реализация». Например, прецеденты реализуются кооперациями, а операции - методами.

UML является открытым языком, то есть допускает контролируемые расширения, чтобы отразить особенности моделей предметных областей. Механизмы расширения UML включают:

  •  стереотипы (stereotype) - расширяют словарь UML, позволяя на основе существующих элементов языка создавать новые, ориентированные для решения конкретной проблемы;
  •  помеченные значения (tagged value) - расширяют свойства основных конструкций UML, позволяя включать дополнительную информацию в спецификацию элемента; 
  •  ограничения (constraints) - расширяют семантику конструкций UML, позволяя создавать новые и отменять существующие правила. 

Совместно эти три механизма расширения языка позволяют модифицировать его в соответствии с потребностями проекта или особенностями технологии разработки.

Виды диаграмм  UML 

Графические изображения моделей системы в UML называются диаграммами. В терминах языка UML определены следующие их  виды:

  •  диаграмма вариантов использования или прецедентов (use case diagram) 
  •  диаграмма классов (class diagram) 
  •  диаграммы поведения (behavior diagrams) 
  •  диаграмма состояний (statechart diagram) 
  •  диаграмма деятельности (activity diagram) 
  •  диаграммы взаимодействия (interaction diagrams)  
  •  диаграмма последовательности (sequence diagram)  
  •  диаграмма кооперации (collaboration diagram) 
  •  диаграммы реализации (implementation diagrams)
  •  диаграмма компонентов (component diagram)
  •  даграмма развертывания (deployment diagram)

Каждая из этих диаграмм конкретизирует различные представления о модели системы. При этом, диаграмма вариантов использования представляет концептуальную модель системы, которая является исходной для построения всех остальных диаграмм. Диаграмма классов является логической моделью, отражающей статические аспекты структурного построения  системы, а диаграммы поведения, также являющиеся разновидностями логической модели, отражают динамические аспекты её функционирования. Диаграммы реализации служат для представления компонентов системы и относятся к ее физической модели.

Из перечисленных выше диаграмм некоторые служат для обозначения двух и более подвидов. В качестве же самостоятельных представлений используются следующие диаграммы: вариантов использования, классов, состояний, деятельности, последовательности, кооперации, компонентов и развертывания.

Для диаграмм языка UML существуют три типа визуальных обозначений, которые важны с точки зрения заключенной в них информации:

  •  связи, которые представляются различными линиями на плоскости; 
  •  текст, содержащийся внутри границ отдельных геометрических фигур; 
  •  графические символы, изображаемые вблизи визуальных элементов диаграмм. 

При графическом изображении диаграмм рекомендуется придерживаться следующих  правил:

  •  каждая диаграмма должна быть законченным представлением некоторого фрагмента моделируемой предметной области; 
  •  представленные на диаграмме сущности модели должны быть одного концептуального уровня; 
  •  вся информация о сущностях должна быть явно представлена на диаграмме; 
  •  диаграммы не должны содержать противоречивой информации; 
  •  диаграммы не следует перегружать текстовой информацией; 
  •  каждая диаграмма должна быть самодостаточной для правильной интерпретации всех ее элементов; 
  •  количество типов диаграмм, необходимых для описания конкретной системы, не является строго фиксированным и определяется разработчиком; 
  •  модели системы должны содержать только те элементы, которые определен


 

А также другие работы, которые могут Вас заинтересовать

26008. СМО с бесконечной очередью и полной взаимопомощью для произвольных потоков. Граф, система уравнений, расчетные соотношения 46.78 KB
  Такая модель задается следующим образом: Эта система является эргодической. СМО типа М М ∞ М Для вероятностей pk этой системы из: Имеем: Где биноминальные коэффициенты определяются обычным образом: Определяя p0 получаем: И следовательно: Таким образом: Не составляеет труда вычислить среднее число требований в системе: Используя частную производную получаем:.
26009. СМО с конечной очередью для пуассоновских потоков. Граф, система уравнений, расчетные соотношения 76.36 KB
  Длина очереди m число мест в очереди. Если все места в очереди заняты то заявка получает отказ. Если при обслуживании освобождается канал то из очереди переходит очередная заявка на обслуживание; все заявки сдвигаются и вновь поступившая заявка ставится в конец очереди. вероятность того что заявке придется стоять в очереди вероятность очереди: 4.
26010. Понятие системного обслуживания. Классификация 39.96 KB
  Системой массового обслуживания СМО называется любая система для выполнения заявок поступающих в нее в случайные моменты времени. Оптимизация и оценка эффективности СМО состоит в нахождении средних суммарных затрат на обслуживание каждой заявки и нахождение средних суммарных потерь от заявок не обслуженных. Каналом обслуживания называется устройство в СМО обслуживающее заявку. СМО содержащее один канал обслуживания называется одноканальной а содержащее более одного канала обслуживания многоканальной.
26011. СМО с конечной очередью и частичной взаимопомощью для пуассоновских потоков. Граф, система уравнений, расчетные соотношения 37 KB
  Интенсивность обслуживания заявки каждым каналом равна а максимальное число мест в очереди равно m. Рисунок 1 Граф состояний многоканальной СМО с ограниченной очередью все каналы свободны очереди нет; заняты l каналов l = 1 n очереди нет; заняты все n каналов в очереди находится i заявок i = 1 m. Данная система является частным случаем системы рождения и гибели если в ней сделать следующие замены: В результате получим: Образование очереди происходит когда в момент поступления в СМО очередной заявки все каналы заняты т.
26012. СМО с конечной очередью и частичной взаимопомощью для произвольных потоков. Граф, система уравнений, расчетные соотношения 42.71 KB
  Предполагается, что имееется конечное число М требований, причем интенсивность поступления каждого требования равна λ. Кроме того, система содержит m обслуживающих приборов, каждый из которых описывается параметром µ. В системе имеется конечное чмсло мест для ожидания
26013. СМО с конечной очередью и полной взаимопомощью для пуассоновских потоков. Граф, система уравнений, расчетные соотношения 48.02 KB
  Граф система уравнений расчетные соотношения. В частности для такого описания будем перекрывать входящий пуассоновский поток на время когда система запоняется следующим образом: Эта система эргодична всегда.
26014. Понятие дисциплины обслуживания. Основные классы 14.6 KB
  Дисциплина ожидания определяет порядок приема заявок в систему и размещения их в очереди дисциплина обслуживания порядок выбора заявок из очереди для назначения на обслуживание. Возможны следующие бесприоритетные дисциплины обслуживания то есть правила выборки заявки из очереди при необходимости назначения на обслуживание: выбирается первая в очереди заявка дисциплина первым пришел первым вышел FIFO First Input First Output; выбирается последняя в очереди заявка дисциплина последним пришел первым...
26015. Классификация бесприоритетных дисциплин обслуживания 13.11 KB
  Возможны следующие бесприоритетные дисциплины обслуживания то есть правила выборки заявки из очереди при необходимости назначения на обслуживание: выбирается первая в очереди заявка дисциплина первым пришел первым вышел FIFO First Input First Output; выбирается последняя в очереди заявка дисциплина последним пришел первым вышел LIFO Last Input First Output; заявка выбирается из очереди случайным образом.
26016. Классификация приоритетных дисциплин обслуживания 13.39 KB
  В приоритетных дисциплинах обслуживания заявкам некоторых типов представляется преимущественное право на обслуживание перед заявками других типов называемое приоритетом. Относительные приоритеты учитываются только в момент назначения заявки на обслуживание. При освобождении канала обслуживания сравниваются приоритеты заявок находящихся в очереди в состоянии ожидания и обслуживание предоставляется заявке с наибольшим приоритетом после чего выбранная заявка захватывает канал обслуживания. Обслуживание...