20514

Розбивання квадратних матриць на клітки першим способом

Доклад

Информатика, кибернетика и программирование

Одним з найважливіших завдань є завдання знаходження вирішення систем лінійних рівнянь алгебри. коефіцієнтів Х шукане рішення записане у вигляді стовпця з n елементів F стовпець вільних членів з mелементів. Якщо A прямокутна m ´ n матріца рангу до те рішення може не існувати або бути не єдиним. В разі неіснування рішення має сенс узагальнене рішення що дає мінімум сумі квадратів нев'язок див.

Украинкский

2013-07-25

41.5 KB

0 чел.

Розбивання квадратних матриць на клітки першим способом.

Квадратні матриці. Степенью A n М. А називається твір n співмножників, рівних А . Вираження віда a 0 А n + a 1 A n-1 + ... + a n E , де a 0 , a 1 ..., a n — числа, називається значенням полінома a 0 t n + a i t n-1 + ... + a n E від квадратної М. А . Правила дій над поліномами від даної М. А нічим не відрізняються від правил дій над алгеброю многочленами. Можна розглядати і аналітичні функції від М. В частковості, якщо

 

є ряд (наприклад ), що сходиться на всій комплексній плоскості, то і безконечний ряд  виявляється таким, що сходиться при будь-який М. А , його суму природно рахувати равной f(A) . Якщо ж ряд f(t) сходиться в деякому кінцевому крузі збіжності, тоf(A) задається цим рядом для досить «малих» М.

  Аналітичні функції від М. грають велику роль в теорії диференціальних рівнянь. Так, система звичайних диференціальних рівнянь з постійними коефіцієнтами, записаних в матричних позначеннях у вигляді

 

(тут Х — стовпець з невідомих функцій), має решеніє х = e At C , де З — стовпець з довільних постійних.

  Ненульовий стовпець Х такий, что AX = l Х , називається власним вектором М. А . У цій рівності коефіцієнт l може бути лише одним з коріння многочлена

 

який називається характеристичним многочленом М. А . Це коріння називається власними значеннями, або характеристичними числами, М. А . Коефіцієнти характеристичного многочлена виражаються через суми деякого мінору М. А. Зокрема, p 1 = a 11 + ... + a 1n = Sp A (слід A ) . Справедливе співвідношення Келі — Гамільтона: якщо j( f ) є характеристичний многочлен М. А , то j( A )= 0, так що М. А є «коренем» свого характеристичного многочлена.

  М. А називається подібною М. В, якщо існує така неособлива М. З , що В  =  С -1  . Легко перевіряється, що подібні М. мають однакові характеристичні многочлени.

 М. — корисний апарат для дослідження багатьох завдань теоретичної і прикладної математики. Одним з найважливіших завдань є завдання знаходження вирішення систем лінійних рівнянь алгебри. У матричних позначеннях такі системи записуються у вигляді

  AX = F ,

де A є М. коефіцієнтів, Х — шукане рішення, записане у вигляді стовпця з n елементів, F — стовпець вільних членів з mелементів. Якщо А — квадратна неособлива М., то система має єдине решеніє Х = A -1 F . Якщо A прямокутна ( m ´ n -матріца рангу до , те рішення може не існувати або бути не єдиним. В разі неіснування рішення має сенс узагальнене рішення, що дає мінімум сумі квадратів нев'язок (див. Найменших квадратів метод ). За відсутності єдиності точного або узагальненого рішення часто вибирають нормальне рішення тобто вирішення з найменшою сумою квадратів компонент. Нормальне узагальнене рішення знаходиться по формулі Х = A + F . Найбільш важливий випадок перевизначеної системи: до  =  n  <  m . В цьому випадку узагальнене рішення єдине. Прі до  =  m  <  n (недовизначена система) точних рішень нескінченно багато і формула дає нормальне рішення.

  Не менш важливим для багаточисельних застосувань (у теорії диференціальних рівнянь, в теорії малих коливань, в квантовій механіці і т. д.) є завдання вирішення повної або часткової проблеми власних значень. Тут шукаються всі або частина власних значень М. і що належать їм власні або кореневі (деякі узагальнення власних) вектори. До цього завдання близько примикає і узагальнена проблема власних значень, в якій шукаються числа і вектори такі, что AX  = l BX ( А і В — задані М.), і багато родинних проблем.

  З повною проблемою безпосередньо зв'язано також завдання про приведення перетвореннями подібності квадратною М. до канонічеськjй форми. Такою формою буде diag (l 1 ..., l n ), якщо М. має n різних власних значень l 1 ..., l n , або форма Жордана [див. Нормальна (жорданова) форма матриці ] в загальному випадку.

  Зважаючи на велику практичну важливість поставлених завдань для їх чисельного вирішення є велике число різних методів. Поряд із знаходженням чисельного рішення поважно оцінювати якість знайденого рішення і досліджувати стійкість вирішуваного завдання.


 

А также другие работы, которые могут Вас заинтересовать

75886. Гіпертекст. Базові функції гіпертексту. Види гіпертексту 28.87 KB
  Общеизвестным и ярко выраженным примером гипертекста служат вебстраницы документы HTML язык разметки гипертекста размещённые в Сети. Узлы связаны разнообразными отношениями типы которых задаются разработчиками программного обеспечения гипертекста или самим читателем. Компьютерные реализации гипертекста бывают иерархическими или сетевыми. Иерархическое древовидное строение гипертекста существенно ограничивает возможности перехода между его компонентами.
75887. Морфологічний та синтаксичний аналіз письмової сови. Кількісні характеристики морфем, граматичних категорій та синтаксичних конструкцій 25.93 KB
  МОРФОЛОГИЯ как часть грамматики это учение о слове о его грамматических классах частях речи морфологических категориях и формах. ЗНАМЕНАТЕЛЬНЫЕ ЧАСТИ РЕЧИ имя существительное имя прилагательное имя числительное местоимение глагол наречие категория состояния традиционно выделяют по совокупности признаков к которым относят: 1 обобщенное грамматическое частеречное значение отвлеченное от лексических и частных морфологических значений слов данной части речи; 2 характерный для каждого класса комплекс морфологических категорий и...
75888. Комп’ютерні технології і сучасна лексикографічна наука 26.72 KB
  Множество различных компьютерных лексикографических программ можно разделить на две больших группы: программы поддержки лексикографических работ и автоматические словари АС различных типов включающие лексикографические базы данных. Автоматические словари. Иными словами различаются автоматические словари конечного...
75889. Когнітивний інструментарій когнітивної лінгвістики 26.47 KB
  В основе этого языка лежит теория знаний разработанная в искусственном интеллекте и образующая важный раздел когнитивной науки. Онтологически разделение декларативных и процедурных знаний соответствует различным типам знаний когнитивной системы человека. В теории знаний для изучения и представления знания используются различные структуры знаний фреймы сценарии планы. Минскому фрейм это структура данных предназначенная для представления стереотипной ситуации Более развернуто можно сказать что фрейм является концептуальной структурой...
75890. Понятие «империя» и многообразие его трактовок. Континентальные и морские империи 15.44 KB
  Континентальные и морские империи. Исторически такая трактовка империи оформилась не сразу. Понятие империи было тесно связано с завоеваниями территориальными захватами. Развитие империи как агрессивного расширяющегося государства всегда сопровождалось развитием личной диктатуры тиранической власти единоличного правителя.
75891. Межнациональные отношения внутри империи. Метрополия и колонии. Сравнительный анализ Российской империи, Австро-Венгрии, Великобритании. «Внутренний колониализм» 18.63 KB
  Сравнительный анализ Российской империи АвстроВенгрии Великобритании. Характер интеграции присоединенных территорий материальные духовные связи метрополии с завоеванными территориями определяют будущее империи. Сравним Британскую Российскую и АвстроВенгерскую империи.
75892. СССР как «империя»: сохранился ли имперский характер государства в советский период? Является ли современная Россия империей 17.35 KB
  Империя: слово и его значения Ливен Д. Российская империя и её враги с XVI века до наших дней. Она расширялась в соперничестве с имперскими континентальными государствами Австрийской и Османской империями на западе Китаем и Северо-Американскими Штатами на востоке.
75893. Неудобные регионы современной России: в чем их специфика, будущее этих регионов в составе России? (анализ одного-двух примеров на выбор семинариста – Кавказ, Сибирь, Крым, Дальний Восток, «крайний север», Калининград и т.п.) 14.13 KB
  Население регионов все активнее пытается привлечь внимание Центра к своим социальноэкономическим и экологическим проблемам; все большее число людей обращают внимание на региональные культурные особенности и проявляют интерес к истории своего края. Предварительные результаты последней переписи населения проведенной в октябре 2010 года свидетельствуют о том что в графе национальность жители ряда регионов указывали новые национальные самоидентификации.
75894. Понятие «центр» - «периферия» в современной России и их границы 15.2 KB
  Результаты многочисленных социологических исследований показывают что такие ощущения присущи населению субъектов РФ вне зависимости от их географического положения и связаны они во-первых с повсеместными представлениями об удаленности интересов и политических решений центра от насущных проблем периферии и во-вторых с уверенностью в том что влиять на центральные интересы и решения фактически невозможно.