20523

Определение потерь напряжения и мощности в проводах линии и электропередачи

Лабораторная работа

Физика

Определение потерь напряжения и мощности в проводах линии и электропередачи. Выяснить какое влияние оказывает нагрузка линии и сопротивление её проводов на напряжение приемника. Определить мощность потерь в проводах и КПД линии электропередачи. Уменьшение напряжения в линии по мере удаления от источника вызвано потерями напряжения в проводах линии Ui=U1U2 и численно равно падению напряжения.

Русский

2013-07-31

69.5 KB

32 чел.

Лабораторная работа № 6.

Определение потерь напряжения и мощности в проводах линии и электропередачи.

Цель:

1. Выяснить какое влияние оказывает нагрузка линии и сопротивление её проводов на напряжение приемника.

2. Определить мощность потерь в проводах и КПД линии электропередачи.

Теоретическое обоснование:

Каждый приёмник электрической энергии рассчитан на определённое номинальное напряжение. Так как приёмники могут находиться на значительных расстояниях от питающих их электростанций, то потери напряжения в проводах имеют важное значение. Допустимые потери напряжения в проводах для различных установок не одинаковы, но не превышают 4-6% номинального напряжения.

На рис. приведена схема электрической цепи, состоящая из источника электрической энергии, приёмника и длинных соединительных проводов. При прохождении по цепи электрического тока I показания вольтметра U1, включённого в начале линий, больше показаний вольтметра U2, включённого в конце линий.

Уменьшение напряжения в линии по мере удаления от источника вызвано потерями напряжения в проводах линии Ui=U1-U2 и численно равно падению напряжения. Согласно закону Ома, падение напряжения в проводах линии равно произведению тока в ней на сопротивление проводов: Uii=I*R тогда Ui=U1-U2=Uii= - сопротивление проводов линии.

Мощность потерь в линии можно определить двумя способами:

Pi=Ui*I=(U1-U2)*I или Pii=I*R

Уменьшить потери напряжения и потери мощности в линии электропередачи можно уменьшая силу тока в  проводах либо увеличивая сечение  проводов с целью уменьшения их сопротивления. Силу тока в проводах можно уменьшить увеличивая напряжение в начале линии.

КПД линии электропередачи определяется отношением мощности, отдаваемой электроприёмнику, к мощности, поступающей в линию, или отношением напряжения в конце линии к напряжению в её начале:

Схема передачи электрической энергии:


Приборы и оборудование:

Два вольтметра и амперметр электромагнитной системы, ламповый реостат, двухполюсный автоматический выключатель, соединительного провода.

Порядок выполнения работы:

Ознакомиться с приборами и оборудованием, предназначенными для выполнения лабораторной работы, записать их технические характеристики.

Подать в цепь напряжение. Изменяя нагрузку с помощью лампового реостата, при трёх её значениях записать показания приборов в таблице.

Вычислить потери двумя способами:

1. Как разность напряжений в конце и начале линий.

2. Как произведение силы тока на сопротивление проводов.

Определить мощность потерь в линии и КПД. Результаты вычислений занести в таблицу.

Таблица изменения числа потребителей:

Изменяем напряжение в начале и конце линий.

Данные наблюдений

Результаты вычислений

Лампы, Вт

U1

U2

I

U

Pвх

Рвых

Р

%

40

150

149

0,13

1

19,5

19,4

0,1

99,3

60

148

146

0,2

2

29,6

29,2

0,4

98,6

100

150

148

0,3

2

45

44,4

0,6

98,7

; ;  ;  ;  ;

; ;  ;  ;  ;

; ;  ;  ;  ;

Вывод:

На основе проведённого опыта выяснили, что факторами, влияющими на потери в линиях являются: протяжённость линий; сечение проводника; состав материала и количество потребителей. Чем больше потребителей, тем меньше КПД. . Уменьшить потери напряжения и потери мощности в линии электропередачи можно уменьшая силу тока в проводах либо увеличивая сечение проводов с целью уменьшения их сопротивления.

Ответы на контрольные вопросы:

  1.  Разность напряжений в начале и конце линий равна падению напряжения в проводах и называется потерей напряжения.
  2.  U=IR
  3.  Сопротивление проводов зависит от материала из которого они изготовлены, площади поперечного сечения и длины этих проводов.
  4.  КПД линии определяется отношением мощности, отдаваемой электроприемнику, к мощности, поступающей в линию, или отношением напряжения в конце линии к напряжению в ее начале.

5.  Чем выше рабочее напряжение, тем ниже сила тока, а следовательно меньше потерь.


 

А также другие работы, которые могут Вас заинтересовать

36204. Конструктивные схемы зданий (схемы зданий каркасных и зданий с несущими стенами) 24.76 KB
  Несмотря на значительные различия существующие между зданиями разног назначения как во внешнем виде так и во внутренней структуре все они состоят из основных взаимосвязных архитектурноконструктивных элементов выполняющих определенные функции. Основные элементы здания разделяются на: Несущие воспринимают основные нагрузки возникающие в здании. К основным элементам здания относятся: фундаменты стены перекрытия отдельные опоры крыша перегородки лестницы окна двери. ФУНДАМЕНТ подземная конструкция основным назначением...
36205. Естественные и искусственные основания зданий (классификация грунтов) 32.5 KB
  Классификация грунтов: Скальные грунты залегают в виде сплошного массива. Эти грунты несжимаемы водоустойчивы и при отсутствии трещин и пустот являются наиболее прочными и надежными основаниями. Менее прочны скальные грунты залегающие в виде трещиноватых слоев образующих подобие сухой кладки. Крупнообломочные грунты это несвязные обломки скальных пород с преобладанием по массе свыше 50 частиц размером более 2мм.
36206. Фундаменты малоэтажных зданий (конструкции, материалы) 188.22 KB
  Фундаменты малоэтажных зданий конструкции материалы Фундамент конструктивный элемент здания воспринимающий нагрузку от наземной части здания и передающий ее на основание. с подушкой3трапецеидальной формы4ступенчатый высота ступени больше или равно 30 см Фундаменты малоэтажных жилых зданий...
36207. Деревянные конструкции. Принцип фахверковой стены. Вопросы ее утепления и облицовки 51 KB
  Фахверковые дома имеют жёсткий несущий каркас из : стоек вертикальных элементов балок горизонтальных элементов раскосов диагональных элементов которые и являются основной отличительной особенностью конструкции фахверка. В основном применяются конструкции позволяющие создать большую площадь остекления что зрительно создает эффект растворения границы интерьера сближая человека с природой. В основном несущие элементы конструкции фахверка покрывают защитным составом позволяющим сохранять древесину сухой трудновоспламеняемой и...
36208. КАМЕННЫЕ КОНСТРУКЦИИ ОДНОСЛОЙНЫЕ И МНОГОСЛОЙНЫЕ КОНСТРУКЦИИ НЕСУЩИХ СТЕН 159 KB
  Стены основные элементы конструкции здания. Несущая стена является естественным продолжением и неотъемлемым элементом конструкции здания служит опорой для балок или бетонных плит потолочного перекрытия. Наружные стены могут быть однослойной или слоистой конструкции.
36209. Задачи дискретной оптимизации. Основные точные методы дискретной оптимизации: поиск с возвратом, динамическое программирование, метод ветвей и границ. Приближённые методы дискретной оптимизации: жадный алгоритм, метод локальных вариаций 126.5 KB
  Тогда в терминах ЦЧЛП задача о рюкзаке может быть сформулирована так: найти максимум линейной функции при ограничениях хj  0 . Найти кратчайший маршрут коммивояжера бродячего торговца начинающийся и заканчивающийся в заданном городе и проходящий через все города. Воспользовавшись им при k = n 1 1 можно найти Q х0 оптимальное значение критерия эффективности. Зная х1 можно найти оптимальное управление на 2й стадии и т.
36210. Языки описания выбора. Процедуры выбора при критериальном описании: скалярно-оптимизационный механизм выбора, человеко-машинные процедуры, мажоритарные схемы 73.5 KB
  Процедуры выбора при критериальном описании: скалярнооптимизационный механизм выбора человекомашинные процедуры мажоритарные схемы. Как любая теория теория выбора начинается с языка описания. К настоящему времени сложилось три основных языка описания выбора: критериальный язык; язык бинарных отношений; язык функций выбора.
36211. Классы численных методов построения множеств неулучшаемых решений. Основные теоремы для поточечных методов и алгоритма последовательного выбора 31.5 KB
  Процедуры первой группы осуществляют поочередный поиск отдельных неулучшаемых точек как решений вспомогательных скалярных задач. В них на каждой итерации получается целое множество âнеплохихâ точек которое на последующих шагах постепенно улучшается. Генератор на каждой итерации порождает набор точек zk а ФВ осуществляет отбор в некотором смысле лучших из них: Генератор множеств точек zk Функция выбора С Для организации выбора необходимо произвести парные сравнения исходных вариантов и отбросить те из...
36212. Эффективные и слабо-эффективные решения. Поточечные методы поиска слабо-эффективных решений и оценок. Линейная свёртка, теорема Карлина. Логическая свёртка, теорема Гермейера. Геометрический смысл теорем Карлина и Гермейера 79.5 KB
  Поточечные методы поиска слабоэффективных решений и оценок. Решения или оценки называются эффективными слабоэффективными если они неулучшаемы по отношению Парето Слейтера. Поиск слабоэффективных решений или оценок поточечными методами базируется на основной теореме 2.