20624

Мегамир, основные космологические и космогонические представления

Лекция

Естествознание и природоведение

– среднее расстояние от Земли до Солнца равное 15×1011м. Все планеты – остывшие тела светящиеся отраженным от Солнца светом. Солнечная система Девять планет вращающиеся вокруг Солнца принято делить на две группы: планеты Земной группы Меркурий Венера Земля Марс и планетыгиганты Юпитер Сатурн Уран Нептун Плутон. Считается что диаметр Солнечной системы равен приблизительно 6×1016 м: на этом расстоянии планеты удерживаются силой тяготения Солнца.

Русский

2013-07-31

115 KB

11 чел.

Концепции современного естествознания
Лекция 13. Мегамир, основные космологические и космогонические представления (I)

1. Основные представления о мегамире

2. Солнечная система
Планеты-гиганты
Малые планеты и кометы 

3. Гипотезы о возникновении планетных систем 

Контрольные вопросы
Литература 

1. Основные представления о мегамире

Между мегамиром и макромиром нет строгой границы. Обычно полагают, что он начинается с расстояний около 107 и масс 1020 кг. Опорной точкой начала мегамира может служить Земля (диаметр 1,28×10+7 м, масса 6×1021 кг. Поскольку мегамир имеет дело с большими расстояниями, то для их измерения вводят специальные единицы: астрономическая единица, световой год и парсек.

Астрономическая единица (а.е.) – среднее расстояние от Земли до Солнца, равное 1,5×1011м.

Световой годрасстояние, которое проходит свет в течение одного года, а именно 9,46×1015м.

Парсек (параллакс-секунда) – расстояние, на котором годичный параллакс земной орбиты (т.е. угол, под которым видна большая полуось земной орбиты, расположенная перпендикулярно лучу зрения) равен одной секунде. Это расстояние равно 206265 а.е. = 3,08×1016 м = 3,26 св. г.

Небесные тела во Вселенной образуют системы различной сложности. Так Солнце и движущиеся вокруг него 9 планет образуют Солнечную систему. Все планеты – остывшие тела, светящиеся отраженным от Солнца светом. В ясную ночь мы видим множество звезд, которые составляют лишь ничтожную часть звезд, входящих в нашу Галактику. Основная часть звезд нашей галактики сосредоточена в диске, видимом с Земли «сбоку» в виде туманной полосы, пересекающей небесную сферу – Млечного Пути. Часто говорят, что наша Галактика называется Млечный Путь (собственно, слово галактика происходит от греческого слова «галактос» – молочный, млечный).

Представить масштабы Вселенной можно с помощью рис. 1.

Все небесные тела имеют свою историю развития. Возраст Вселенной равен 15…20 млрд. лет (иногда указывают среднее число – 18 млрд. лет). Возраст Солнечной системы оценивается в 5 млрд. лет, Земли – 4,5 млрд. лет.

К началу документа

2. Солнечная система

Девять планет, вращающиеся вокруг Солнца принято делить на две группы: планеты Земной группы (Меркурий, Венера, Земля, Марс) и планеты-гиганты (Юпитер, Сатурн, Уран, Нептун, Плутон). Считается, что диаметр Солнечной системы равен приблизительно 6×1016 м: на этом расстоянии планеты удерживаются силой тяготения Солнца.

Планеты Земной группы. Планеты Земной группы сравнительно невелики, медленно вращаются вокруг своих осей (сутки на Меркурии длятся около 60 земных суток, на Венере – 243 дня). Ось вращения Венеры наклонена в другую сторону, и вращается Венера в направлении, обратном ее движению вокруг Солнца. У этих планет мало спутников (у Меркурия и Венеры нет, у Земли – один, у Марса – два совсем небольших). У Меркурия атмосферы практически нет, очень плотная атмосфера Венеры состоит, в основном, из СО2, что приводит к сильному парниковому эффекту (температура на поверхности Венеры достигает 500О). Земля имеет плотную азотно-кислородную атмосферу. Атмосфера Марса состоит в основном из CО2, однако она сильно разрежена (давление в 150 раз меньше, чем давление на поверхности Земли).

Поверхность планет Земной группы твердая, гористая, она хорошо изучена благодаря автоматическим станциям, пролетавшим вблизи планет или даже садившимся на поверхности Марса и Венеры. Следует отметить, что в Солнечной Системе лишь планеты Земной группы имеют твердую поверхность. Химический состав планет Земной группы приблизительно одинаков. Они, в основном, состоят из соединений кремния и железа. В небольшом количестве присутствуют и другие элементы.

Более или менее одинаково и строение планет земной группы. В центре планет есть железные ядра разной массы. У Меркурия, Земли, Марса часть его находится в жидком состоянии. Выше ядра находится слой, который называют мантией. Верхний слой мантии называется корой. У этих планет есть магнитные поля: почти незаметное у Венеры и ощутимое у Земли. Меркурий и Марс обладают магнитными полями средней напряженности. 

Рис. 1

Земля движется по орбите со скоростью 30 км/ч. Ее орбита незначительно отличается от круговой. В течение 24 часов Земля делает полный оборот вокруг своей оси, которая наклонена к плоскости орбиты под углом 66О34’’. Земля сплюснута у полюсов, таким образом, ее форма близка к эллипсоиду вращения.

Планеты Земной группы отделены от планет-гигантов поясом астероидов – малых планет. Самая крупная из них – Церера, была открыта первой, в начале 19 века. Сейчас зарегистрировано более 5500 малых планет. Все они движутся вокруг Солнца в том же направлении, что и большие планеты, однако их орбиты вытянуты значительно сильнее.

К началу документа

Планеты-гиганты. Планеты-гиганты располагаются за орбитой Марса. Это Юпитер, Сатурн, Уран и Нептун. Самый легкий гигант – Уран – в 14,5 раза массивнее Земли. Их особенность – большие размеры и масса. Например, радиус Юпитера в 11 раз больше земного, а масса в 318 раз больше земной. Планеты-гиганты имеют малую плотность, самая низкая плотность у Сатурна: 0,7×103 кг/м3 (ср. у Земли – 5,5×103 кг/м3). В среднем плотность планет гигантов 3-7 раз уступает плотности планет земной группы.

У планет-гигантов нет твердой поверхности. Газы их обширных атмосфер, уплотняясь с приближением к центру, постепенно переходят в жидкое состояние.

Эти планеты быстро совершают один оборот вокруг своей оси (10-18 часов). Причем, они вращаются как бы слоями: слой планеты, расположенный вблизи экватора, вращается быстрее всего, а самое медленное вращение присуще околополярным областям. Такое необычное вращение обусловлено тем, что, как уже было сказано выше, планеты-гиганты – это жидкие планеты. По той же причине гиганты сжаты у полюсов, что можно заметить в простой телескоп. Солнце, являясь газовым шаром, тоже вращается слоями с периодом 25-35 суток.

Сами гиганты и их атмосферы состоят из легких элементов: водорода и гелия. Уран и Нептун в значительной степени содержат в себе метан, аммиак, воду и другие не слишком тяжелые соединения. Другие элементы тоже есть, но их гораздо меньше. Ученые выяснили, что с увеличением массы гиганта растет и его атмосфера. Следовательно, самой обширной атмосферой обладает Юпитер. Уран и Нептун, близкие по массе, мало отличаются и своими атмосферами. Сатурн занимает промежуточное положение.

В центре гигантов есть небольшое твердое ядро, но оно относительно невелико. Газообразная атмосфера каждого гиганта плавно переходит в жидкость, а та постепенно тоже уплотняется к центру планет. По-видимому, в недрах планет-гигантов, где давление и температура очень высокие, есть слой водорода, обладающего металлическими свойствами. Это необычное вещество не является в полной мере ни газообразным, ни твердым. Но оно обладает важным свойством: проводит ток. Благодаря этому, планеты-гиганты обладают магнитным полем.

Магнитные поля планет-гигантов превосходят магнитные поля планет земной группы. Интенсивность магнитного поля качественно определяется размерами магнитосферы планеты: пространства вокруг нее, в котором магнитное поле планеты сильнее солнечного. Влияние солнечного ветра – потока заряженных частиц, вырывающихся с поверхности Солнца, – делает очертания магнитосфер несимметричными. Магнитные поля захватывают летящие от Солнца зараженные частицы высоких энергий, формируя мощные радиационные пояса и полярные сияния.

Планеты-гиганты окружены естественными спутниками Точное их число еще не известно. Из известных 68-ми спутников только три принадлежат планетам земной группы. У Сатурна открыто 18 спутников, у Урана – 21, у Юпитера – 17, у Нептуна – 8.

Кроме спутников, планеты-гиганты имеют кольца – скопления мелких частиц, вращающихся вокруг планет и собравшихся вблизи плоскости их экваторов. Наиболее крупными обладает Сатурн – они были обнаружены еще в 17 в.

К началу документа 

Малые планеты и кометы. Между орбитами Юпитера и Сатурна проходят орбиты тысяч небольших (в среднем, несколько километров) и немассивных тел, именуемых астероидами. Эти тела, называемые также малыми планетами, не имеют правильной формы и по химическому составу близки к планетам земной группы. Орбиты астероидов имеют различные углы с плоскостью эклиптики, их орбиты заметно вытянуты. Все известные астероиды вращаются вокруг Солнца в прямом направлении. За орбитой Нептуна, как позволяют судить последние наблюдения, тоже находится пояс астероидов. Орбита планеты Плутон, видимо, уже проходит внутри этого пояса.

Похожи на малые планеты и кометы, состоящие из смеси замерзших газов и пыли (грязные снежки). Приближаясь к Солнцу, кометы прогреваются, и с их поверхности начинают испаряться газы, которые светятся под воздействием солнечного излучения. Солнечный ветер отбрасывает испарившиеся частицы, образуя так называемые кометные хвосты, направленные всегда прочь от Солнца. Как и астероиды, кометы обладают малыми размерами и массами. Их орбиты могут быть самыми различными: иметь всевозможные эксцентриситеты, наклоны к плоскости эклиптики. Кометы могут двигаться вокруг Солнца, как в прямом, так и в обратном направлении.

Солнце. Солнце, центральное тело солнечной системы, представляет собой раскалённый плазменный шар; Солнце - ближайшая к Земле звезда. Масса Солнца в 332958 раз больше массы Земли. В Солнце сосредоточено 99,866% массы Солнечной системы. Температура поверхности Солнца, 5770 К.

История телескопических наблюдений Солнца начинается с наблюдений, выполненных Г. Галилеем в 1611 году; были открыты солнечные пятна, определён период вращения Солнца вокруг своей оси. В 1843 году немецкий астроном Г. Швабе обнаружил цикличность солнечной активности. Развитие методов спектрального анализа позволило изучить физические условия на Солнце. В 1814 году Й. Фраунгофер обнаружил тёмные линии поглощения в спектре Солнца - это положило начало изучению химического состава Солнца.

С 1836 года регулярно ведутся наблюдения затмений Солнца, что привело к обнаружению короны [1] и хромосферы [2] Солнца, а также солнечных протуберанцев. В 1913 году было доказано существование на Солнце магнитных полей. В начале 40-х годов XX века было открыто радиоизлучение Солнца. Существенным толчком для развития физики Солнца во второй половине XX века послужило развитие магнитной гидродинамики и физики плазмы. После начала космической эры изучение ультрафиолетового и рентгеновского излучения Солнца ведётся методами внеатмосферной астрономии с помощью ракет, автоматических орбитальных обсерваторий на спутниках Земли, космических лабораторий с людьми на борту.

Направление вращения Солнца совпадает с направлением вращения вокруг него всех его планет. Полагают, что содержание водорода в Солнце по массе около 70%, гелия около 27%, содержание всех остальных элементов около 2,5%. Более 70 химических элементов, найденных на Солнце, присутствуют в составе планет Солнечной системы, что доказывает единое происхождения Солнца и планет солнечной системы. Источником энергии, пополняющим потери на излучение и поддерживающим высокую температуру Солнца, являются ядерные реакции превращения водорода в гелий, происходящие в недрах Солнца.

Солнечная активность. На фотосфере – видимой поверхности Солнца наблюдаются темные пятна. Причина их появления – сильные магнитные поля, которые замедляют движение горячих потоков от центра Солнца к его поверхности. Таким образом, темные пятна – это более холодные области на фотосфере. С появлением пятен связаны и другие явления: вспышки в хромосфере, сопровождающиеся различными излучениями (тепловым, ультрафиолетовым, рентгеновским и т.п.). Эти явления называются солнечной активностью. В годы максимумов солнечной активности мощность различных видов излучения возрастает в несколько раз. Показателем, или индексом солнечной активности служит число Вольфа , которое вычисляется по формуле 

W=k*(f+10g),

где f - количество наблюдаемых пятен, g - количество образованных ими групп, k - нормировочный коэффициент, выводимый для каждого наблюдателя и телескопа, чтобы иметь возможность совместно использовать найденные ими относительные числа Вольфа.

Количество пятен колеблется с периодом в 11 лет, т.е. солнечная активность имеет циклических характер.

К началу документа

3. Гипотезы о происхождении планет Солнечной системы

Вопросами происхождения планет Солнечной системы занимается космогония. Полного и исчерпывающего ответа на этот вопрос наука не дает. Пока нет возможности проверить выводы современных теорий применительно к какой-либо другой планетной системы. Рассмотрим наиболее известные космогонические гипотезы.

Гипотеза Канта-Лапласа. Кант предположил, что Солнечная система образовалась из космического облака, или «хаоса». Формируясь из сгущений, возникших в первичной туманности, планеты отдалялись от нее и от Солнца центробежными силами. Интересно, что Кант изложил эти идеи в трактате, посвященном доказательству бытия Божия. По мнению Канта «Бог вложил в силы природы тайное искусство самостоятельно развиваться из хаоса в совершенное мироздание». У Канта, таким образом, образование планет происходило из холодного газопылевого облака.

Идею Канта поддержал Лаплас, однако, согласно его гипотезе планеты образовались в результате отделения от раскаленного протосолнца [3] газовых колец, их охлаждения и конденсации. Кольца разделялись на несколько масс, образовавших затем разные планеты.

Эта гипотеза получила название небулярной (от лат nebula – туманность) гипотезы Канта Лапласа. Поскольку формирование колец и планет происходило в условиях вращения туманности и действия центробежных сил, эта гипотеза называется еще и ротационной (лат. rotatio – вращение).

Момент количества движения Солнечной системы. Момент количества движения, или кинетический момент вычисляется для вращающихся тел. Он количественно характеризует это вращение. Тела могут вращаться как вокруг своей оси, так и вокруг другого тела. Для планет подходит второй случай. Так как размеры планет невелики в сравнении с радиусами их орбит, то их можно приближенно считать точечными. Тогда значение момента количества движения, присущего планете, вычисляется перемножением массы планеты, радиуса ее орбиты и скорости движения по ней (L=m.r.v).

Закон сохранения момента количества движения заключается в том, что никакие события внутри изолированной системы взаимодействующих вращающихся тел не приводят к изменению общего для системы момента количества движения. Чтобы не происходило в прошлом в Солнечной системе, эта физическая величина и миллиарды лет назад должна была быть такой же, как и сейчас.

Для Солнца, которое находится в центре Солнечной системы и вращается вокруг своей оси, момент количества движения вычисляется сложнее. Весь объем Солнца мысленно разбивается на бессчетное количество частиц и момент количества движения рассчитывается путем интегрирования. Важной характеристикой всей Солнечной системы является особенность этого распределения между планетами и Солнцем. На Солнце, в 750 раз превосходящее по массе все, что вокруг него вращается, приходится меньше 2% всего момента количества движения Солнечной системы.

Гипотеза Джинса. Гипотеза Канта-Лапласа не могла объяснить также и тот факт, что момент количества движения (кинетический момент) планет приблизительно в 29 раз больше момента количества движения Солнца, а это противоречит закону сохранения кинетического момента. Для разрешения этого противоречия появились так называемые «катастрофические гипотезы», к которым относится гипотеза Джинса. Согласно ей некая звезда прошла неподалеку от Солнца и вызвала мощные приливы на нем, принявшие форму газовых струй, из которых впоследствии образовались планеты. Из этой гипотезы следовал вывод об уникальности Солнечной системы.

Гипотеза О.Ю. Шмидта. Советский ученый О.Ю. Шмидт (1891-1956) предположил, что Солнце, вращаясь вокруг центра Галактики, могло захватить материю, обладающую достаточным моментом количества движения. Расчеты Шмидта, в частности, показали, что начальный период обращения Солнца был очень большим, а затем должен был уменьшиться до 20 суток. В действительности он равен 25 суткам, и такое совпадение считается хорошим.

В настоящее время ученые склоняются к различным вариантам небулярной гипотезы. Получены интересные результаты на численных моделях с использованием мощных ЭВМ. Для Земли, например, предложена следующая схема (см. рис. 2).

Ожидается, что новый свет на загадку образования Солнечной системы прольют дальнейшие исследования планет земной группы и планет-гигантов с помощью автоматических космических станций.

К началу документа

Контрольные вопросы

1. Назовите специальные единицы, использующиеся для оценки расстояний в мегамире.
2. Кратко опишите строение Солнечной системы.
3. Назовите особенности планет земной группы?
4. Назовите особенности планет-гигантов?
5. Дайте краткую характеристику Солнцу.

6. Что подразумевается под понятием «солнечная активность»?
7. Чему равен период солнечной активности?
8. Чем обусловлено появление солнечных пятен, что они представляют из себя?
9. Что такое число Вольфа, для чего оно используется?

Литература

1. Маров М.Я. Планеты солнечной системы. – М.: Наука, 1986.
2. Зигель Ф.Ю. Астрономическая мозаика. - М.: Наука, 1987.
3. Дягилев Ф.М. Концепции современного естествознания. - М.: Изд. ИЭМПЭ, 1998.
4. Дубнищева Т.Я. Концепции современного естествознания. – Новосибирск: ЮКЭА, 1997.

[1] Корона – самый обширный и разреженный слой атмосферы Солнца
[2] Хромосфера – самый близкий к видимой поверхности Солнца – фотосфере, плотный и тонкий слой атмосферы Солнца
[3] Протосолнце (<греч. prōtоs первый) – «первичное» солнце, звезда в начальной стадии развития.

К началу документа


 

А также другие работы, которые могут Вас заинтересовать

41512. ОСНОВНЫЕ ПОКАЗАТЕЛИ ЭКСПЛУАТАЦИОННОЙ РАБОТЫ 100 KB
  Качественные показатели использования вагонов и локомотивов. Подача вагонов по стыковым пунктам дорог где n – число стыковых пунктов; . – число вагонов переданных за сутки в сумме чётного и нечётного направлений. По каждому стыковому пункту выделяют общий приём Uпр состоящий из суммы приёма гружённых и порожних а также общую сдачу складывающуюся из сдачи гружёных и порожних вагонов .
41513. Психологія особистості керівника 311 KB
  Феномен керівника в історії розвитку суспільства Мотиваційна сфера особистості керівника Труднощі вимоги та обмеження у роботі керівників Якості і риси керівника Проблема статі в управлінні Ортобіоз особистості керівника Регресивний розвиток керівника та управлінська деформація 1.Феномен керівника в історії розвитку суспільства Давні історичні політичні та соціальні вчення Єгипту Китаю Греції Риму та інших країн відображали не лише основні риси ранніх типів суспільства а й певні характерологічні особливості правителів...
41514. ПСИХОЛОГІЧНІ ЧИННИКИ ОЦІНЮВАННЯ УПРАВЛІНСЬКИХ КАДРІВ 110.5 KB
  Роль оцінювання працівників у процесі управління Соціальнопсихологічні завдання оцінювання Оцінювання за головними параметрами діяльності класифікація характеристика елементів класифікації Установки і форми поведінки керівників під час оцінювання підлеглих Характеристика сучасного менеджера управлінця 1. Роль оцінювання працівників у процесі управління Оцінювання працівників є складовою процесу управління. Головна мета оцінювання: 1.
41515. УПРАВЛІНСЬКЕ КОНСУЛЬТУВАННЯ І БІЗНЕС 79 KB
  Специфіка найму і роботи штатних та зовнішніх управлінських консультантів Головні стилі роботи консультанта. Особливості діяльності консультантів. Специфіка найму і роботи штатних та швшнініх управлінських консультантів У розвинених країнах широко використовується особливий вид діяльності управлінське консультування. Зауважимо що жодна значна перебудова у фірмах Заходу не обходилась без запрошення консультантів.
41516. Соціальні та психологічні аспекти керівництва 147 KB
  Соціальні та психологічні аспекти керівництва Кадри управління. Кадри управління. Кадри управління є складовою частиною управління ця частина системи має: відповідну кваліфікацію. Зокрема керівників залежно від профілю колективів котрі вони очолюють прийнято поділяти на лінійних та функціональних а від рівня і місця в загальній системі управління господарством на керівників відповідних ланок управління вищої середньої низової ланок.
41517. Колегіальний підхід в прийнятті управлінських рішень 177.5 KB
  Функція планування передбачає рішення про те якими повинні бути цілі організації і що повинні робити члени організації щоб досягнути цих цілей. Стратегічне планування сприяє зниженню ризику під час прийняття рішення. Вторинна інформація це дані зібрані раніше для цілей що відмінні від цілей пов'язаних з вирішенням досліджуваної проблеми. Інтерес науковців до цієї проблеми зумовлений тим що в рішеннях фіксується вся сукупність відносин котрі виникають у процесі трудової діяльності і управління організацією.
41518. Основи групової самоорганізації 124.5 KB
  Думка щодо органічності суспільства і людини виражена шведським вченим Еммануїлом Сведенборгом 1688 1772: Існує чітка функціональна подібність між людством народом і окремим індивідом. А теоцентричний представник філософського езотеризму Володимир Олексійович Шмаков 1929 доводив виказану позицію раціональними методами: Вірно виявлена загальна ідея організму однаково застосовна до людини і суспільства але в останньому вона виявляється з більшою силою і багатоманіттям.тому і заперечення того що суспільство є організмом і повне...
41519. КОНФЛІКТИ В СИСТЕМІ УПРАВЛІННЯ ПСИХОЛОГІЧНА ПІДГОТОВКА ДО НОВОВВЕДЕНЬ 180 KB
  Поняття конфлікту. Поняття інновація та нововведення Головні передумови позитивного ставлення до нововведень 1 Поняття конфлікту. Позитивний ефект конструктивного конфлікту для окремої людини може виявлятися і в тощ' що при його вирішенні відбувається усунення внутрішнього психічного напруження і як наслідок буде знайдено вихід зі стану фрустрації. Під час аналізу конфлікту дуже важливо з'ясувати справжні причини його виникнення.
41520. ТЕОРЕТИЧНІ ОСНОВИ ПСИХОЛОГІЇ УПРАВЛІННЯ 112 KB
  Психологія управління на Заході Поняття про науку управління Поняття управління використовують у різних науках. Відповідно до трьох головних сфер розвитку об'єктивного світу нежива природа жива природа суспільство можна виокремити головні види управління: управління в неживій природі; управління в живій природі; управління у суспільстві.