20645

Электромагнитная картина мира (ЭМКМ)

Лекция

Естествознание и природоведение

Теория электромагнитного поля Максвелла3. замечательно еще и тем что вместе с ним в науку вошло понятие поля. Силовой характеристикой электростатического поля является его напряженность. Силовой характеристикой магнитного поля является напряженность .

Русский

2013-07-31

55 KB

64 чел.

Концепции современного естествознания
Лекция 9. Электромагнитная картина мира (ЭМКМ)

1. Основные экспериментальные законы электромагнетизма
2. Теория электромагнитного поля Максвелла
3. Электронная теория Лоренца 

Контрольные вопросы
Литература 

1. Основные экспериментальные законы электромагнетизма.

Электрические и магнитные явления были известны человечеству с древности. Само понятие «электрические явления» восходит к Древней Греции (вспомните: два куска янтаря («электрон»), потертые тряпочкой, отталкиваются друг от друга, притягивают мелкие предметы…). Впоследствии было установлено, что существует как бы два вида электричества: положительное и отрицательное.

Что касается магнетизма, то свойства некоторых тел притягивать другие тела были известны еще в далекой древности, их назвали магнитами. Свойство свободного магнита устанавливаться в направлении «Север-Юг» уже во II в. до н.э. использовалось в Древнем Китае во время путешествий. Первое же в Европе опытное исследование магнита было проведено во Франции в 13 в. В результате было установлено наличие у магнита двух полюсов. В 1600 г. Гильбертом была выдвинута гипотеза о том, что Земля представляет собой большой магнит: эти и обусловлена возможность определения направления с помощью компаса.

18-й век, ознаменовавшийся становлением МКМ, фактически положил начало и систематическим исследованиям электрических явлений. Так было установлено, что одноименные заряды отталкиваются, появился простейший прибор – электроскоп. В середине 18 в. была установлена электрическая природа молнии (исследования Б. Франклина, М. Ломоносова, Г. Рихмана, причем заслуги Франклина следует отметить особо: он является изобретателем молниеотвода; считается, что именно Франклин предложил обозначения "+" и "–" для зарядов).

В 1759 г. английский естествоиспытатель Р. Симмер сделал заключение о том, что в обычном состоянии любое тело содержит равное количество разноименных зарядов, взаимно нейтрализующих друг друга. При электризации происходит их перераспределение.

В конце 19-го, начале 20-го века опытным путем было установлено, что электрический заряд состоит из целого числа элементарных зарядов е=1,6×10-19 Кл. Это наименьший существующий в природе заряд. В 1897 г. Дж. Томсоном была открыта и наименьшая устойчивая частица, являющаяся носителем элементарного отрицательного заряда (электрон, имеющий массу moe=9,1×10-31). Таким образом, электрический заряд является дискретным, т.е. состоящим из отдельных элементарных порций q=± ne, где n – целое число.

В результате многочисленных исследований электрических явлений, предпринятых в 18-19 вв. был получен ряд важнейших законов.

Закон сохранения электрического заряда: в электрически замкнутой системе сумма зарядов есть величина постоянная. (Т.е. электрические заряды могут возникать и исчезать, но при этом обязательно появляется и исчезает равное количество элементарных зарядов противоположных знаков). Величина заряда не зависит от его скорости.

К началу документа

Закон взаимодействия точечных зарядов, или закон Кулона:

, где e - относительная диэлектрическая проницаемость среды (в вакууме e = 1). Силы Кулона существенны до расстояний порядка 10-15м (нижний предел). На меньших расстояниях начинают действовать ядерные силы (т.н. сильное взаимодействие). Что касается верхнего предела, то он стремится к :.

Исследование взаимодействия зарядов, проводившееся в 19 в. замечательно еще и тем, что вместе с ним в науку вошло понятие поля. Начало этому было положено в работах М. Фарадея. Поле неподвижных зарядов получило название электростатического. Электрический заряд, находясь в пространстве, искажает его свойства, т.е. создает поле. Силовой характеристикой электростатического поля является его напряженность. Электростатическое поле является потенциальным. Его энергетической характеристикой служит потенциал j.

Открытие Эрстеда. Природа магнетизма оставалась неясной до конца 19 в., а электрические и магнитные явления рассматривались независимо друг от друга, пока в 1820 г. датский физик Х. Эрстед не открыл магнитное поле у проводника с током. Так была установлена связь электричества и магнетизма. Силовой характеристикой магнитного поля является напряженность . В отличие от незамкнутых линий электрического поля силовые линии магнитного поля замкнуты, т.е. оно является вихревым.

Электродинамика. В течение сентября 1820 г. французский физик, химик и математик А.М. Ампер разрабатывает новый раздел науки об электричестве – электродинамику.

Законы Ома, Джоуля-Ленца: важнейшими открытиями в области электричества явились открытый Г. Омом (1826) закон I=U/R и для замкнутой цепи I= ЭДС/(R+r), а также закон Джоуля-Ленца для количества тепла, выделяющегося при прохождении тока по неподвижному проводнику за время t: Q = IUT.

Работы М.Фарадея. Исследования английского физика М.Фарадея (1791-1867) придали определенную завершенность изучению электромагнетизма. Зная об открытии Эрстеда и разделяя идею о взаимосвязи явлений электричества и магнетизма, Фарадей в 1821 г. поставил задачу «превратить магнетизм в электричество». Через 10 лет экспериментальной работы он открыл закон электромагнитной индукции. (Суть закона: изменяющееся магнитное поле приводит к возникновению ЭДС индукции ЭДСi = k×DФm/Dt, где DФm/Dt – скорость изменения магнитного потока сквозь поверхность, натянутую на контур). С 1831 по 1855 гг. выходит в свет в виде серий главный труд Фарадея «Экспериментальные исследования по электричеству».

Работая над исследованием электромагнитной индукции, Фарадей приходит к выводу о существовании электромагнитных волн. Позже, в 1831 г. он высказывает идею об электромагнитной природе света.

Одним из первых, кто оценил работы Фарадея и его открытия, был Д.Максвелл, который развил идеи Фарадея, разработав в 1865 г. теорию электромагнитного поля, которая значительно расширила взгляды физиков на материю и привела к созданию электромагнитной картины мира (ЭМКМ).

К началу документа

2. Теория электромагнитного поля Д. Максвелла

Концепция силовых линий, предложенная Фарадеем, долгое время не принималась всерьез другими учеными. Дело в том, что Фарадей, не владея достаточно хорошо математическим аппаратом, не дал убедительного обоснования своим выводам на языке формул. («Это был ум, который никогда не погрязал в формулах – сказал о нем А. Эйнштейн).

Блестящий математик и физик Джеймс Максвелл берет под защиту метод Фарадея, его идею близкодействия и поля, утверждая, что идеи Фарадея могут быть выражены в виде обычных математических формул, и эти формулы сравнимы с формулами профессиональных математиков.

Теорию поля Д. Максвелл разрабатывает в своих трудах «О физических линиях силы» (1861-1865) и «Динамическая теория поля (1864-1865). В последней работе и была дана система знаменитых уравнений, которые (по словам Герца) составляют суть теории Максвелла.

Эта суть сводилась к тому, что изменяющееся магнитное поле создает не только в окружающих телах, но и в вакууме вихревое электрическое поле, которое, в свою очередь, вызывает появление магнитного поля. Таким образом, в физику была введена новая реальность – электромагнитное поле. Это ознаменовало начало нового этапа в физике - этапа, на котором электромагнитное поле стало реальностью, материальным носителем взаимодействия.

Мир стал представляться электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля. (Действительно, вспомним, что в МКМ господствовал принцип дальнодействия, согласно которому действие различного рода сил передается мгновенно, без участия среды.)

Система уравнений для электрических и магнитных полей, разработанная Максвеллом, состоит из 4-х уравнений, которые эквивалентны 4-м утверждениям.

Уравнение

Утверждение

div E ~ q

Электрическое поле, соответствующее какому-либо распределению заряда, определяется из закона Кулона

div H = 0

Магнитные заряды не существуют

Переменное магнитное поле возбуждает электрический ток

Магнитное поле возбуждается токами и переменными электрическими полями

Анализируя свои уравнения, Максвелл пришел к выводу, что должны существовать электромагнитные волны, причем скорость их распространения должна равняться скорости света. Отсюда вывод: свет – разновидность электромагнитных волн. На основе своей теории Максвелл предсказал существование давления, оказываемого электромагнитной волной, а, следовательно, и светом, что было блестяще доказано экспериментально в 1906 г. П.Н. Лебедевым.

Вершиной научного творчества Максвелла явился «Трактат по электричеству и магнетизму».

Развитие корпускулярно-континуальных представлений в трудах Максвелла. Развивая теорию электромагнитного поля, Максвелл не отвергал и дискретность материи. Он писал: «Даже атом, когда мы приписываем ему способность вращаться, можно представлять состоящим из многих элементарных частиц.» Это было сказано в 1873 г. задолго до открытия электрона. Таким образом, Максвелл не отдавал предпочтения ни дискретности, ни непрерывности материи, допуская возможность и того и другого.

Разработав ЭМКМ, Максвелл завершил картину мира классической физики («начало конца классической физики»). Теория Максвелла является предшественницей электронной теории Лоренца и специальной теории относительности А. Эйнштейна.

К началу документа

3. Электронная теория Лоренца.

Голландский физик Г. Лоренц (1853-1928) считал, что теория Максвелла нуждается в дополнении, так как в ней не учитывается структура вещества. Лоренц высказал в этой связи свои представления об электронах, т.е. крайне малых электрически заряженных частицах, которые в громадном количестве присутствуют во всех телах.

В 1895 г. Лоренц дает систематическое изложение электронной теории, опирающейся, с одной стороны, на теорию Максвелла, а с другой – на представления об «атомарности» (дискретности) электричества. В 1987 г. был открыт электрон, и теория Лоренца получила свою материальную основу.

Совместно с немецким физиком П. Друде Лоренц разработал электронную теорию металлов, которая строится на следующих положениях.

1. В металле есть свободные электроны – электроны проводимости, образующие электронный газ.
2. Остов металла образует кристаллическая решетка, в узлах которой находятся ионы.
3. При наличии электрического поля на беспорядочное движение электронов накладывается их упорядоченное движение под действием сил поля.
4. При своем движении электроны сталкиваются с ионами решетки. Этим объясняется электрическое сопротивление.

Электронная теория позволила количественно описать многие явления, однако в ряде случаев, например, при объяснении зависимости сопротивления металлов от температуры и др. была практически бессильна. Это было связано с тем, что к электронам в общем случае нельзя применять законы механики Ньютона и законы идеальных газов, что было выяснено в 30-х годах 20 в.

В 1902 г. в опытах Кауфмана было обнаружено, что отношение заряда e к его массе m не является постоянной величиной, а зависит от скорости (с ростом скорости оно уменьшается). Из теории следовало, что q = const. Значит, растет масса. Возник вопрос, как это понять? Ответ был дан позже в специальной теории относительности.

К началу документа

Контрольные вопросы

1. Назовите важнейшие законы электричества и магнетизма, положенные в основу ЭМКМ.
2. Дайте характеристику электростатическому полю.
3. В чем состоит суть открытия Эрстеда?
4. В чем отличие силовых линий электрического и магнитного полей?
5. Кто является создателем электродинамики?

6. Охарактеризуйте вклад М.Фарадея в создание ЭМКМ.
7. Раскройте сущность теории Максвелла. Каким утверждениям соответствуют уравнения Максвелла?
8. Какая новая физическая реальность была введена в научную картину мира в результате исследований Максвелла?
9. Какой подход к описанию мира характерен для ЭМКМ – корпускулярный или континуальный?
10. В чем заключается суть электронной теории Г. Лоренца?
11. Назовите основные положения электронной теории металлов.

Литература

1. Дягилев Ф.М. Концепции современного естествознания. М.: Изд.ИЭМПЭ, 1998.
2. Недельский Н.Ф., Олейников Б.И., Тулинов В.Ф. Концепции современного естествознания. Учебное пособие /под общей ред. проф. Тулинова В.Ф. – М: Изд. МУПК, 1996.

К началу документа


 

А также другие работы, которые могут Вас заинтересовать

21343. Информатика — научная дисциплина 863.5 KB
  Информатика как наука Информатика научная дисциплина изучающая структуру и общие свойства информации а также закономерности всех процессов обмена информацией. Информатика трактовалась как комплексная научная и инженерная дисциплина изучающая все аспекты разработки проектирования создания оценки функционирования основанных на ЭВМ систем переработки информации их применения и воздействия на различные области социальной практики. Информатика в широком смысле представляет собой единство разнообразных отраслей науки техники и...
21344. Преобразования структурных схем 749 KB
  Перенос точки ветвления через узел Перенос узла суммирования через звено по ходу сигнала Перенос узла суммирования через звено против хода сигнала Перенос точки ветвления через звено по ходу сигнала Перенос точки ветвления через звено против хода сигнала Последовательное соединение звеньев Последовательным соединением звеньев называется такое соединение при котором выходная величина предыдущего звена поступает на вход последующего. Следовательно при последовательном соединении звеньев их передаточные функции перемножаются Нули и...
21345. Устойчивость систем автоматического управления 1.15 MB
  Оценить устойчивость системы можно в результате исследования ее математической модели то есть решить соответствующую систему дифференциальных уравнений. Для разомкнутой системы математическая модель в операторной форме: или где оператор дифференцирования. Для замкнутой системы: или .
21346. Свойства систем автоматического управления 975.5 KB
  Системы характеризуются: запасом устойчивости областями устойчивости притяжения качеством регулирования и другими характеристиками. Структурная устойчивость неустойчивость Это такое свойство замкнутой системы при наличии которого она не может быть сделана устойчивой ни при каких изменениях параметров. Годограф Найквиста для данной системы изображен на Рис. Устойчивость этой системы определяется значениями параметров и .
21347. Теория автоматического управления 720 KB
  Постановка задачи автоматического управления. Типовые звенья систем автоматического управления все виды математических моделей построение частотных характеристик: Идеальное и реальное усилительные идеальное и реальное дифференцирующие идеальное формирующее идеальное интегрирующее звено второго порядка апериодическое колебательное консервативное минимально фазовые звенья. Устойчивость систем автоматического управления: Анализ устойчивости САУ по корням характеристического уравнения Алгебраический критерий устойчивости Гурвица.
21348. Минимально фазовые и неминимально фазовые звенья 1.64 MB
  Если в передаточной функции произвести замену то получаем называемое частотной характеристикой звена частотный коэффициент передачи звена. Общая фаза выходного сигнала звена будет складываться из частичных фаз определяемых каждым двучленом числителя и знаменателя. Если хотя бы один из корней звена расположен справа то такое звено не минимально фазовое звено.
21349. Порядок эксплуатации станции. Подготовка к работе 34.71 KB
  ; тумблер ПУ откл.; тумблер СОИ откл. Блок ВГ903: тумблер АВТАНОМ.; тумблер БЛ.
21350. Назначение, состав, основные технические характеристики, устройство АСП Р-934Б 34.13 KB
  Состав станции Станция размещается на гусеничном тягаче МТ ЛБУ. Время реакции станции с момента выхода в эфир подавляемого РЭС до момента создания ему дежурной помехи при работе по 20 предварительно заданным частотам в пределах одной литеры не более 20 мкс при работе по неизвестным частотам в пределах 20 МГц не более 800 мкс. Служебная связь в станции обеспечивается с помощью радиостанции Р173. Экипаж станции 3 человека.
21351. Автоматизированная станция помех Р-934УМ 73.5 KB
  1 предназначена для обнаружения анализа пеленгования источников радиоизлучений ИРИ и создания помех линиям УКВ радиосвязи системам сотовой и транковой связи а также системам телевидения.1 Станция помех Р934УМ может работать автономно в сопряженной паре однотипной АСП в качестве ведущей или ведомой а также под управлением пункта управления Р330КМА. В отличие от станции помех Р934У в АСП Р934УМ установлена более совершенная быстродействующая аппаратура управления и разведки позволяющая определять пеленги на источники...