2069

Роль ДНК как материального носителя наследственности

Доклад

Биология и генетика

Доказательства роли ДНК как материального носителя наследственности. Структура ДНК, объясняющая ее роль как материального носителя наследственности.

Русский

2013-01-06

38.18 KB

12 чел.

Доказательства роли ДНК как материального носителя наследственности. Структура ДНК, объясняющая ее роль как материального носителя наследственности.

Молекула ДНК была открыта И. Мишером (Швейцария, 1869) в клеточных ядрах. Позднее было установлено, что ДНК составляет основу хромосом ядра.

В 1943 году О. Т. Эвери, К. МакЛеод, М.МакКарти обнаружили, что ДНК, выделенная из вирулентного штамма бактерии Streptomyces pneumo-пше, переводила невирулентный штамм этой бактерии в вирулентную форму. Значит, ДНК, выделенная из вирулентного штамма, несет наследуемую генетическую информацию, дающую признак вирулентности; эта информация включается в ДНК невирулентных клеток реципиента.

Тщательный анализ ДНК самых различных организмов показал, что количественное соотношение отдельных оснований в молекуле ДНК варьирует в широких пределах, но при этом всегда сохраняется соотношение 1 : 1 между А и Г, с одной стороны, и Г и Ц - с другой.

Обобщив результаты многочисленных исследований молекул нуклеиновых кислот, Э.Чаргафф сформулировал следующие правила:

 1) препараты ДНК, полученные из разных тканей одного и того же вида, имеют одинаковый нуклеотидный состав;

2) нуклеотидный состав у разных видов неодинаков;

3) нуклеотидный состав ДНК у данного конкретного вида не меняется с возрастом организма;

4) число адениновых остатков в любой молекуле ДНК независимо от видовой принадлежности организма равно числу тиминовых остатков, а число гуаниновых остатков равно числу цитозиновых остатков.

Молекула ДНК, согласно модели Дж.Уотсона и Ф.Крика (Великобритания, 1953), представляет собой две полимерные цепочки, закрученные одна вокруг другой в виде спирали. Модель состоит из двух цепей ДНК, закрученных в спираль вправо вокруг одной оси с образованием двойной спирали

Оказалось, что две противоположно направленные (антипараллельные) (их 5'и 3'-межнуклеотидные мостики направлены в противоположные стороны) цепи ДНК спирально переплетаются; они удерживаются между собой азотистыми основаниями А―Т и Г—Ц. При этом пуриновые основания связаны слабыми водородными связями с пиримидиновыми основаниями. Этими же связями удерживаются вместе две цепи всей молекулы.

Аденин всегда связан с тимином (А + Т), а гуанин с цитозином (Г+Ц). Эти пары азотистых оснований, дополнительны (комплементарны) по отношению друг к другу. Дополнительны и обе цепочки молекул ДНК. Схематически молекула ДНК может быть изображена в виде винтовой лестницы, ступени которой — это пары азотистых оснований, а боковые стороны — молекулы дезоксирибозы и фосфорной кислоты.

Расстояние между нуклеотидами 3,4 А, диаметр двойной спирали равен 20 А.

Один полный оборот спирали включает 10 нуклеотидов и занимает расстояние 34 А.

Молекула ДНК на всем протяжении состоит из параллельных нитей и имеет поперечник, равный 20А. Это возможно только благодаря тому, что пуриновые основания, имеющие длину кольца 12 А, соединяются с пиримидиновыми основаниями с длиной кольца 8 А.

С помощью модели Уотсона — Крика удалось объяснить многие важные биологические свойства ДНК, эта модель общепризнанна.

Одно из важнейших свойств ДНК — это способность ее к самоудвоению (репликации). В течение двух клеточных поколений ДНК хромосом Еscherichia coli метили радиоактивным изотопом водорода — тритием (3Н-тимидином). На полученных радиоавтографах были видны нити ДНК в момент раскручивания (V-образная форма) и образование новых двойных цепей.

Убедительные доказательства самокопирования ДНК были также получены в опытах с выращиванием бактерий в среде, содержащей тяжелый азот (15N). В азотистых основаниях ДНК таких бактерий через некоторое время обычный азот 14N был полностью заменен изотопом 15N. Тогда бактерии, содержащие тяжелую ДНК, переносили в среду с 14N, где они некоторое время росли. Очевидно, на этой среде вновь синтезированная ДНК бактерий должна содержать обычный азот 14N и быть легкой. Исходя из гипотезы Уотсона — Крика о репликации ДНК путем разделения цепей, можно было предполагать, что плотность молекулы ДНК в различных генерациях бактерий будет неодинаковой.

В первом поколении потомство перенесенных бактерий должно иметь ДНК средней плотности, так как ее молекулы «гибридные»: они состоят из одной тяжелой и одной легкой цепей. ДНК, выделенная из бактерий второго поколения, должна представлять собой смесь молекул двух плотностей. Та половина ДНК, которая составлена из двух легких цепей, должна иметь нормальную плотность, а та, в состав которой вошла одна тяжелая и одна легкая цепь, должна быть полутяжелой.

ДНК из бактерий второго поколения была путем центрифугирования разделена на две фракции: одна из них в сравнении с тяжелой родительской действительно оказалась легкой, вторая — полутяжелой.

Таким образом, поведение ДНК в точности соответствовало предсказаниям, сделанным на основе гипотезы Уотсона — Крика.


 

А также другие работы, которые могут Вас заинтересовать

14573. Модель разноцветного куба. Способы получения плоских проекций трехмерных объектов. Задание положения и ориентации камеры 81.5 KB
  Лабораторная работа №4 Модель разноцветного куба. Способы получения плоских проекций трехмерных объектов. Задание положения и ориентации камеры. 1.Рисование трехмерного куба. Куб следует рассматривать как шесть многоугольников которые определяют его грани. Мас
14574. Работа с изображением. Наложение текстуры 67 KB
  Лабораторная работа №5 Работа с изображением. Наложение текстуры. 1.Работа с изображением Существует множество графических форматов bmp pcx gif jpeg и прочие. OpenGL напрямую не поддерживает не один из них. В OpenGL нет функций чтения/записи графических файлов. Но подде
14575. Использование источников света в OpenGL и свойств материала 70 KB
  Лабораторная работа №6 Использование источников света в OpenGL и свойств материала. 1.Описание источников света в OpenGL. В системе OpenGl поддерживаются источники света четырех типов: фонового освещения ambient lighting точечные источники point sources прожекторы spotlights удален
14576. Кривые и поверхности в OpenGL 75 KB
  Лабораторная работа № 7 Кривые и поверхности в OpenGL Кривые Безье Кривая Безье задается векторной функцией одной переменной Cu = [ Xu Yu Zu] Где u изменяется в некоторой области например [0.0 1.0]. Фрагмент поверхности Безье задается векторной фу
14577. Реализация выбора объектов в интерактивной графической программе 52 KB
  Лабораторная работа № 8 Реализация выбора объектов в интерактивной графической программе Цель работы Изучение механизма выбора OpenGL средства реализующего функции логического устройства типа селектор 1. Выбор и обратная связь Некоторые графические прикладн...
14578. Работа логических узлов ЭВМ 17.42 KB
  Лабораторная работа №4 Работа логических узлов ЭВМ Цель работы: Освоить работу логических узлов ЭВМ. Задание: Построить схему по заданной логической функции. Преобразовать выражение согласно варианту таблица 1 в базисы 2ИНЕ с помощью законов ДеМорган
14579. Основные характеристики процессоров различных архитектур 19.84 KB
  Лабораторная работа №5 Основные характеристики процессоров различных архитектур Цель работы: Выяснить области применения существующих процессоров на основе их архитектур. Выделить основные характеристики существующих процессоров. Задание: ...
14580. Внутренние интерфейсы системной платы 499.09 KB
  Лабораторная работа №7 Внутренние интерфейсы системной платы Цель работы: Изучение внутренних интерфейсов системной платы. Задание 1 Идентифицируйте внутренние интерфейсы системной платы. Задание 2 Дайте сравнительную характеристику внутренних интерфе
14581. Интерфейсы периферийных устройств IDE, SCSI, SATA 253.13 KB
  Лабораторная работа №8 Интерфейсы периферийных устройств IDE SCSI SATA Цель лабораторной работы: Изучение интерфейсов периферийных устройств; Методические указания: Периферийные шины используются в основном для внешних запоминающих устройств. Интерфей...