2071

ДНК и вирусы

Доклад

Биология и генетика

Вирусы — это внутриклеточные паразиты животных, растений и бактерий.

Русский

2013-01-06

38.46 KB

4 чел.

ДНК и вирусы.

Вирусы — это внутриклеточные паразиты животных, растений и бактерий. Вирусы, поражающие бактерии, называют бактериофагами или просто фагами (в буквальном переводе «фаг» — пожиратель бактерийу). Вирусы состоят из белковой оболочки, заполненной молекулой нуклеиновой кислоты. В химическом отношении они представляют собой нуклеопротеиды. Частицы одних вирусов содержат ДНК, в состав же других входит только РНК. В последнее время были открыты РНК-ДНК-со-держащие вирусы. Их геном состоит попеременно из РНК и ДНК. Для изучения свойств нуклеиновых кислот и явлений наследственности на молекулярном уровне наиболее широко были использованы фаг Т2, размножающийся внутри клеток кишечной палочки Еscherichia coli, и вирус табачной мозаики (ВТМ). Частица фага Т2 состоит наполовину из ДНК и наполовину из различных, белков. При сильном увеличении у него хорошо различается шестиугольная головка и нитевидный хвост, в конце его имеется пластинка, к которой прикрепляются хвостовые нити. Внутри головки помещается туго скрученная в спираль очень длинная нить ДНК.

Атакуя бактерию, фаг «садится» хвостом на нее и хвостовыми нитями прикрепляется к ее поверхности. Вслед за этим он впрыскивает в клетку-хозяина свою ДНК. Белковая оболочка фага при этом остается на поверхности клетки. Попав внутрь клетки, ДНК фага парализует нормальную работу клетки, клеточная ДНК распадается, и синтез белков в ней прекращается. Весь контроль над биохимическим аппаратом клетки переходит к вирусной ДНК, которая полностью переключается на производство белковых молекул, необходимых для репродукции новых вирусных частиц, С огромной скоростью ДНК вируса начинает «штамповать» себе подобные структуры: примерно за 20 минут образуется несколько сотен новых зрелых частиц фага. Они переполняют клетку, оболочка ее разрывается, и частицы фага, выходят во внешнюю среду, готовы поражать новые бактериальные клетки.

Очень наглядно и точно генетическая роль ДНК была установлена Херши и Чейз благодаря использованию изотопной метки при изучении размножения фага Т2. Белок фага был помечен радиоактивной серой (35S), а ДНК — радиоактивным фосфором (32Р).

Такой препарат фага смешивали с суспензией бактериальных клеток. После этого в потомстве фага с помощью специальных счетчиков радиоактивности прослеживали распределение метки. Оказалось, что новые фаговые частицы содержали только испускавший β-излучение радиоактивный фосфор, которым была помечена ДНК. Меченый белок родительского фага дочернему поколению не передавался. 35S ни у одной частицы в белковой оболочке не содержалась.

Вирус табачной мозаики устроен предельно просто. Он имеет палочковидную форму и состоит из длинной нити РНК, на которую нанизано несколько сотен совершенно одинаковых белковых молекул. РНК у ВТМ выполняет ту же функцию, что ДНК у фагов и других вирусов. Если РНК этого вируса отделить от своего белкового «футляра» и ввести внутрь клетки растения, то произойдет заражение и образуются новые многочисленные частицы фага. Встряхивая в водном растворе фенола суспензии частиц фага, отделяют РНК вируса от его белка. Затем заражают листья табака отдельно каждым компонентом. При этом оказывается, что белковая часть заражения не производит, а втирание в листья РНК вызывает заболевание, сопровождающееся образованием в клетках новых частиц вируса.

Опыты с фагом Т2 и ВТМ убедительно доказывают, что материальная преемственность между заражающей частицей и ее потомками обеспечивается исключительно посредством проникающей в бактериальную или растительную клетку ДНК или РНК.

Трансдукция. Поражая бактерию, фаг не всегда ее уничтожает. Иногда процесс вирусной инфекции протекает иначе, чем это было описано выше. ДНК фага, попав в клетку, может прикрепляться к бактериальной хромосоме и образовывать так называемый профаг. Он может делиться вместе с бактериальной хромосомой и при соответствующих постоянных внешних условиях в течение длительного времени передаваться от одного клеточного поколения другому. Но условия могут измениться так, что начнется репродуцирование частиц фага, и клетка погибнет. При этом, отдельные фаговые частицы, как это показали в 1952 г. Н. Циндер и Дж. Ледерберг, в процессе размножения могут случайно захватывать очень небольшие кусочки, хромосомы клетки-хозяина и переносить вместе с ними гены из одной клетки в другую. Такой перенос фагами генетического материала из одних клеток в другие называется трансдукцией (от лат. transductio — перенос). Прикрепляясь к какой-нибудь другой бактериальной клетке, фаг вместе со своей ДНК впрыскивает в нее и этот, захваченный ранее фрагмент. Попав в клетку, такой фрагмент в результате кроссинговера может оказаться в хромосоме бактерии. Если фаг выращивался на одном бактериальном штамме, а затем трансдуцировал другой штамм, генотип последнего может измениться.

Таким образом, совокупность всех полученных в описанных исследованиях данных убедительно показывает, что ДНК — это химическое вещество, в котором организм сохраняет свои наследственные свойства, т. е. наследственная информация организма записана в структуре молекул ДНК.


 

А также другие работы, которые могут Вас заинтересовать

38942. Лидар для исследования состава атмосферы 59.5 KB
  Лидар для исследования состава атмосферы Литвинов Действие лидаров Л этого типа чаще всего основано на неупругом обратном комбинационном рассеянии ОКР зондирующего лазерного излучения ЛИ молекулами газовых компонент ГК имеющих вынужденные колебательновращательные энергетические переходы при взаимодействии с зондирующим ЛИ. При этом с помощью Л по смещению спектральных линий принимаемого излучения ОКР устанавливается наличие в исследуемом участке атмосферы атм определенных ГК а по интенсивности этих линий концентрация...
38943. Лидар для измерения концентрации озона в атмосфере 34 KB
  Действие лидаров для исследования атмосферы основано на том что лазерное излучение распространяясь в реальной атмосфере оставляет в ней свет вызванный взаимодействием квантов излучения с неоднородностями в атмосфере. Это взаимодействие проявляются в упругими неупругом рассеянии лазерного излучения в атмосфере при котором обрся эхосигналы лаз. рассеяния они несут информацию о сввах и параметрах атмосферы что следует из формулы для пиковой мощности принимаемого эхосигнала: Pи пиковая мощность зандирующего импульса лаз. Зрачка...
38944. Применение лидаров для обнаружения и идентификации нефтяного поверхностного загрязнения вод 564 KB
  Если ЗЛИ имеет соответсвующую длину волны УФ то возникает флюоресценция свечение нефтяного пятна: стрелки 22 а также комбинационное рассеяние КР ЛИ стрелки 33 и на молекулах воды стрелки 44. Жизнеспособность фитопланктона свидетельствует о чистоте воды. Эффект флюоресценции воды можно использовать для индикации сильных органических загрязнений и т. О наличии на поверхности воды нефтяной пленки можно судить и по интенсивности отраженного ЛИ 11.
38945. Определение, назначение, действие, применение и классификация лидаров 244 KB
  Действие лидара основано на таких свойствах лазерного излучения как высокая мощность квазимонохроматичность направленность и малая длительность импульсов и таких физических процессах как упругое молекулярное и упругое аэрозольное рассеяние упругое резонансное и неупругое комбинированное рассеяние флюоресценция и поглощение лазерного излучения при его взаимодействии с атомами молекулами и другими частицами веществ в окружающей среде. При распределении зондированного лазерного излучения ЛИ от передающего устройства лидара в исследуемой...
38946. Типы и характеристики излучения лазеров для лидаров 26.5 KB
  Если в лидаре используется лазер с перестраиваемой частотой или длиной волны зондирующего излучения υи = с λи то лидар можно применять для лазерного химического анализа состава атмосферы Земли на основе эффекта комбинационного рассеяния молекулами химических соединений компонент атмосферы. Лидар с перестраиваемой λи зондирующего лазерного излучения может быть использован для химического анализа атмосферы Земли путем измерения интенсивности после прохождения исследуемой трассы. Поэтому исследуя зависимость интенсивности прошедшего в атмосфере...
38948. Физические процессы взаимодействия лазерного излучения с веществом 558 KB
  Физические процессы взаимодействия лазерного излучения с веществом. Действия лидаров для исследования атмосферы основано: лазерное излучение распространяясь в реальной атмосфере оставляет в ней след вызванный взаимодействием фотонов лазерного излучения с атомами и молекулами газов частицами аэрозолей и неоднородностями атмосферы обусловленными турбулентными вихревыми движениями воздуха. Это взаимодействие прежде всего проявляется в упругом и неупругом рассеянии лазерного излучения в атмосфере при которых в частности образуется...
38949. Методические погрешности анализа спектра с использованием процедуры ДПФ. Растекание спектра (эффект Гиббса - leakige). Слияние отсчетов спектра 20.21 KB
  Методические погрешности анализа спектра с использованием процедуры ДПФ. Растекание спектра эффект Гиббса lekige. Слияние отсчетов спектра.Эффект появления ложных спектральных составляющих При расчете параметров процедуры ДПФ выбирают некоторую граничную частоту fg из логарифмического уравнения и находят интервал дискретизации t как: t = 1 2 fg 1.
38950. Синтез линейных элементов ОЭП методом рекуррентных разностных уравнений (РРУ). Алгоритм РРУ, связь с преобразованием Лапласа. Расчет параметров алгоритма РРУ методом Тастина 222.5 KB
  Синтез линейных элементов ОЭП методом рекуррентных разностных уравнений РРУ. Алгоритм РРУ связь с преобразованием Лапласа. Расчет параметров алгоритма РРУ методом Тастина Алгоритм РРУ при синтезе ЛЭ явлся альтернативой свертки.N1 алгоритм РРУ определяет значение ym резщей последовательности с номером m по соотношению: Где m = 0.