20713

Числовые ряды. Признаки сходимости

Доклад

Математика и математический анализ

12 Числовые ряды.–некоторые действительные числа называется числовым рядом. называются членами ряда. аn – nый общий член ряда.

Русский

2013-07-31

58 KB

7 чел.

Мат. Анализ. 12

Числовые ряды. Признаки сходимости.

Символы вида (1),где а12,...,аn,..–некоторые действительные числа, называется числовым рядом. Числа а12,...,аn,.. называются членами ряда.( аnn-ый (общий) член ряда).

С каждым рядом естественным образом связана некоторая числовая последовательность. Обозначим через S1=a1, S2=a1+a2,…, Sn=a1+a2+…+an+… Получили числовую последовательность (Sn)nN, Sn называется n-ой частичной суммой ряда (1). Верно и обратное утверждение: любая числовая последовательность (Sn)nN задает и при этом только единственным образом числовой ряд, для которого эта последовательность является последовательностью его частичных сумм.

Числовой ряд называется сходящимся, если существует конечный предел последовательности его частичных сумм. . S называют суммой ряда (1). Если  не существует или равен , то ряд (1) называют расходящимся.

Числовой ряд (1) называется рядом с положительными членами, если  .  Если ряд (1) с положительными членами, то последовательность (Sn)nN его частных сумм является возрастающей. Обратное тоже верно.

(первый остаток ряда (1))…(n0-ой остаток ряда (1)). Ряд (1) сходится ↔когда сходится любой из его остатков.

Достаточные признаки сходимости рядов с положительными членами.

1. (признак сравнения числовых рядов) Пусть даны 2 ряда с положительными членами  (1) и . Причем выполнено равенство anbn,nN. Тогда 1) если ряд (2) сходится, то ряд (1) также сходится; 2) если ряд (1) расходится, то (2) также расходится.   

2.(признак сравнения в предельной форме) Пусть даны 2 ряда с положительными членами  (1) и . Предположим, что существует конечный или бесконечный предел . Тогда:

1) если l[0;+∞) и ряд (2) сходится, то ряд (1) также сходится.

2) если l∊(0;+∞] и ряд (2) расходится, то ряд (1) также расходится.

Т.о., если l∊(0;+∞), то ряды ведут себя одинаково.

3. (признак Даламбера) Предположим, что для ряда (1) с положительными членами существует конечный или бесконечный предел  Тогда 1) если k<1, то ряд (1) сходится. 2) если k>1, то ряд (1) расходится. 3) если k=1, то данный признак ответа на вопрос о сходимости ряда не дает.

4. Признак Коши. Пусть дан ряд (1) с положительными членами. Предположим, что существует предел . Тогда 1) если 0≤ k<1, то ряд (1) сходится; 2) если k>1, то ряд (1) расходится; 3) если k>1, то данный признак ответа вопрос сходимости не дает.

Д-во. 1) Пусть число q выбрано так, что  k<q<1. Т.к. по условию , то по определению предела существует n0, такое, что . Или . (*) В правой части неравенства (*) стоит n0-ой остаток сходящегося ряда геометрической прогрессии (т.к. q<1). Тогда по признаку сравнения из неравенства (*) получим, что  стоит n0-ой остаток ряда (1) сходится, следовательно и ряд (1) сходится.

2) Пусть . Следовательно по определению предела существует n0, такое, что . Или аn≥1, n≥n0. Следовательно, . Т.о. n0-ой остаток ряда (1) расходится, следовательно и ряд (1) также расходится.

5. (Интегральный признак коши сходимости ряда с положительными членами)

Пусть 1) функция f(x) – неотрицательна и убывает на луче [1;+∞); 2) f(x) – интегрируема на отрезке [1;А], А≥1.

Тогда несобственный интеграл  сходится или расходится одновременно с числовым рядом  


 

А также другие работы, которые могут Вас заинтересовать

62135. Основы пограммирования 78.36 KB
  Применение рабочей тетради в обучении программированию на языке Pascal улучшает качество образования, повышает эффективность учебного процесса на основе его индивидуализации, появляется возможность реализации перспективных методов обучения.
62136. ИНТЕГРАЛ ЛЕБЕГА, ТЕОРЕМЫ О ПРЕДЕЛЬНОМ ПЕРЕХОДЕ 627 KB
  Определение. Назовём функцию f интегрируемой (суммируемой) на X, если существует последовательность простых интегрируемых на X функций, сходящаяся равномерно к f. Интегралом Лебега функции f на множестве X называется предел интегралов от функций
62137. Деньги, их функции 18.52 KB
  Цели урока: Образовательная: выявить причины появления денег главные функции денег; научиться применять полученные знания на примере конкретных жизненных ситуаций; выявить научный смысл понятий: деньги банкнота и кредитная карточка.
62142. Моя семья 32.71 KB
  One, two – I, you One, two – who are you? I am a girl. My name is Kate. I am 9. I live in the house. One, two three – I and she One, two, three – who is she?