20721

Мощность множества. Арифметика счетной мощности

Доклад

Математика и математический анализ

Пусть A некоторое счетное мнво тогда по определению A N.Из всякого бесконечного мнва можно выделить счетное подмново.Сумма конечного числа счетных мнв есть счетное мнво. Сумма счетного числа конечных мнв есть счетное мнво.

Русский

2013-07-31

59.5 KB

11 чел.

20. Мощность множества. Арифметика счетной мощности.

Мн-ва A и B назыв. эквивалентными, если существует биекция мн-ва A на мн-во B т.е  .  

Биекция – инъекция + сюръекция (одновременно).

Ф-ия (отображение)  назыв. сюръекцией (наложением), сюръективным отображением, если Im(F) = Y  (мн-во X отображ. на Y).   F: XY, Im(F)=

Отображение F назыв. инъективным, если .

Биективное отображение – взаимнооднозначное.  Иногда используют  запись «инъективное отображение X на Y».

Для того чтобы отображение было обратимым необх. и достаточно, чтобы отображ. было биективным. Обратимое отображение (x = ,y =), биективное отображ.-  x=(0;+ ),Y.

Отношение эквивалентности  разбивает все мн-во  на попарно-пересек. классы.

Мощностью мн-ва назыв. символ, который приписывают множествам, каждое из которых  эквивалентно некоторому заданному множеству.

Например, мн-во эквив. мн-ву натур.чисел назыв. счетным мн-вом и обознач.- a.

Тоже самое по Галканову.

Опр1: Если и ,то такое соответствие назыв. взаимнооднозначным соответствием между мн-вами A и B (1-1 –соответствие).

Примеры: 1-1 –соответствие между двумя конечными мн-вами возможно, если они сосотоят из одинакового кол-ва элементов. (A~N)

A={2,4,6,…,2n,…}- мн-во четн.чисел.  N={1,2,3,…,n,…}   

Между точками малой и большой окр-ти можно установить 1-1 соотв.

             

Опр: Если A~N, то оно назыв. счетным мн-вом.

Опр: Если между  мн-вом A и B установлено 1-1 соответствие, то они назыв.       

эквивалентными мн-вами .

Всем счетным мн-вам приписыв. буква – a, кот. называется их мощностью.

Если A~N,то =a.

Пример: мн-во всех четн., нечетн., натур. чисел имеют мощность a.

Три свойства отношения эквивалентности:

  1.  A~A – рефлексивность
  2.  A~BB~A – симметричность
  3.  A~B ^ B~C A~C – транзитивность

___

Теорема1.Для того, чтобы мн-во A было счетным необходимо и достаточно, чтобы оно было  представимо в виде A={a1,a2,…,an…}-(бескон.мно-во попарно-различн.эл-ов) т.е. его элементы представляют собой некоторую последовательность.

Док-во: 

1) НЕОБХОДИМОСТЬ. Пусть A – некоторое счетное мн-во, тогда по определению A~N.

из A берем a =a1, из A берем b =a2  и т.д. A={a1,a2,…}справедливость утверждения.

2) ДОСТАТОЧНОСТЬ. anA .  A-cчетное мн-во.

Т2.Из всякого бесконечного мн-ва можно выделить счетное подмно-во.()

Т3.Если A~сч.мн-во и A’, то A-счетно.

Т4.Сумма конечного числа  счетных мн-в есть счетное мн-во.

Т5. Сумма счетного числа конечных мн-в есть счетное мн-во.

Т6. Сумма счетного числа  счетных мн-в есть счетное мн-во.

Т7. Мн-во рацион.чисел – счетно.

Т8. Если к бесконечному мн-ву M прибавить конечное или счетное мн-во A новых элементов, то это не изменит его мощности. M+A~M.

Т9. Если бесконечное мн-во S – несчетно и AS –конечно или счетно, то S\A~S.

Т10. Если елементы мн-ва A таковы, что A={ax1,x2,..xn}(x1,xn – индексы), и каждое из этих индексов пробегает счетное мн-во не зависимо от других, то мн-во A-счетно.

следствия из Т 1-10 :

1) Мн-во точек пл-ти с рац.координатами – есть счетное мн-во.

2) Мн-во точек n-мерного евклидова пр-ва с рац. координатами – есть счетное мн-во.

3) Мн-во векторов с m – натур. или рац. координатами – есть счетное мн-во.

4) Мн-во полиномов a0+a1x+a2x2+…+anxnc цел.коэффиц. - есть счетное мн-во.

5) Мн-во алгебраич.чисел счетно. (Число назыв. алгебраическим, если оно не явл. корнем многочлена с целыми коэффицентами, иначе оно трансцендентное).


 

А также другие работы, которые могут Вас заинтересовать

61201. Будова тексту. Текстовий редактор WordPad 75 KB
  Мета. Ознайомити учнів з поняттями: абзацний відступ, формування абзацу, способи встановлення параметрів абзацу. Повторити будову тексту, його складові частини, тему і мету.
61202. Вулканізм і явища,що його супроводжують 74 KB
  Мета: сформувати знання про вулкани й гейзери, дати поняття про причини їх утворення; розвивати спостережливість, образну память; виховувати здатність співпереживати.
61203. Приліт Ельзика на планету Земля 40 KB
  Запропонувати завдання: підняти ліву руку; підняти праву руку; подивитися на стелю; подивитися на підлогу. А як потрібно звернути на себе увагу щоб лише тобі надали слово Підняти руку.
61204. Музика і мистецтво слова 62 KB
  Музичний матеріал: українські народні пісні: 1. Про який музичний жанр піде сьогодні мова будь ласка відповіді дітей Так мова піде про пісню слайд 1 А давайте пригадаємо хто пише пісні Вірно композитори та поети а також народ.
61205. Внутрішня будова Землі. Літосфера 71.5 KB
  Мета: Дати учням поняття земна кора і літосфера формувати систему знання про внутрішню будову Землі дати відомості про літосферні плити; розвивати просторову уяву уміння створювати образ обєкта; виховувати інтерес до пізнання природи Землі.
61206. Классно-урочная система обучения 35 KB
  Урок это динамическая и вариативная форма организации процесса целенаправленного взаимодействия определенного состава учителей и учащихся включающая содержание формы методы средства обучения и систематически применяемая для решения задач образования развития воспитания в процессе обучения. История развития классноурочной формы обучения. Возникают формы массового обучения детей.