20726

Дифференцируемая функция одной переменной. Геометрический и физический смысл производной. Правила дифференцирования

Доклад

Математика и математический анализ

Касательной к кривой K в точке Mo называется предельное положение секущей когда ММо. Предел Vcp = Если он существует то называется мгновенной скоростью в точке М и обозначается V. yo y = fxox y = Если существует предел то он называется производной данной функции в данной точке xo. Обозначим приращение функции в точке xo приращению аргумента Если вместо xo произвольная точка x то пишут не указывая в какой точке.

Русский

2013-07-31

123 KB

14 чел.

Математический анализ

5. Дифференцируемая функция одной переменной. Геометрический и физический смысл производной. Правила дифференцирования.

Задачи, приводящие к понятию производной.

Задача 1 (геометрическая).

О проведении касательной к кривой.

Пусть дана кривая K, которая является графиком функции y=f(x) на отрезке [a,b].

Опр. Касательной к кривой K в точке Mo называется предельное положение секущей, когда ММо.

Так как по определению касательная есть прямая, зададим уравнение этой прямой в виде yk=kx+b.

Находим b из условия yo=f(xo).

b=yo-kxo

yk=yo-k(x-xo)

yk-yo=k(x-xo)

tgα=y/x

ММо, y0, x0.

Угловой коэффициент k

k=  или k =    (1)

Поставленная геометрическая задача сведена к вычислению предела (1). Если существует предел (1), то существует искомая касательная, иначе – не существует.

Задача 2 (физическая).

Пусть материальная точка М движется из точки А в направлении точки В. Причем закон изменения пройденного пути от времени известен, S=S(t), т.е. есть  функция от t.

Требуется найти мгновенную скорость точки М в некоторый момент.

Пусть t=0 – начальный момент времени.

В момент времени t>0 точка М прошла путь S(t).

В момент времени t+t точка М прошла путь S(t+t).

Тогда

Опр. 

Предел Vcp =  

Если он существует, то называется мгновенной скоростью в точке М и обозначается V.

V =     (2)

Поставленная физическая задача сведена к вычислению предела (2). С математической точки зрения пределы (1) и (2) ничем не отличаются.

Поэтому было решено пределы такого вида обозначать как самостоятельный математический объект и изучить его свойства математическими методами.

Опр.

Пусть дана функция y = f(x).         

Точка Xo фиксирована и принадлежит D(f), yo=f(xo).

yo +y = f(xo+x)

y =

Если существует предел , то он называется производной данной функции в данной точке xo.

Обозначим

(приращение функции в точке xo / приращению аргумента)

Если вместо xo произвольная точка x, то пишут , не указывая в какой точке.

Геометрический и механический (физический) смысл производной.

Возвращаясь к двум ранее поставленным задачам можно сказать следующее:

  1.  геометрический смысл производной – угловой коэффициент касательной, проведенной к графику функции y = f(x) в точке Mo (xo,yo).
  2.  механический смысл производной – мгновенная скорость как производная взятая от функции пути по времени.

Дифференциал функции.

y=f(x),  D(f),  x0D(f).

Опр.

Если приращение f(x) в точке x0 представимо в виде f(x0)=Ax+α(x)*x   (1),

x0, α(x)0, A=const,  то функция f(x) дифференцируема в точке x0.

При  этом слагаемое A*x называется главной линейной частью относительно x этого приращения.

Опр.

Главная линейная часть, приращение функции в точке x0 при A≠0 называется дифференциалом функции в данной точке и обозначается df(x0).

, A≠0.

Теорема.

Для дифференцируемости функции y=f(x) в точке x0 необходимо и достаточно выполнения равенства f(x0)= x+α(x)*x  (2).    

Доказательство.

Необходимость.

Дано, что f(x) дифференцируема в точке x0.

Следует показать справедливость равенства (2).

Так как f(x) дифференцируема в точке x0, то по определению выполняется (1), в котором положим A=.

Тогда из (1) имеем (2).

Достаточность.

Дано (2).

Показать, что существует .

Из (2) имеем

 

С учетом доказанной теоремы для дифференциала, имеем формулу df(x0)=  (3).

Дифференциал функции равен произведению производной в точке x0 на приращение.

 

Правила дифференцирования.

Пусть с=const, u(x) и v(x) имеют производные в точке x0, x0D(u), x0D(v).

Тогда

1)

2)

3)

4)

5)

доказательство для 5)

f(x)=

доказываем по определению.

f(x+x)=

 

Перейдем к пределу при

Получим:

6) производная сложной функции

пусть даны функции u=g(y), y=f(x) и имеет смысл сложная функция g(f(x)).

Как найти ?

Теорема.

Если

1) функция y=f(x) дифференцируема в точке x0

2) функция u=g(y) дифференцируема в точке y0=f(x0),

то сложная функция g(f(x)) дифференцируема в точке x0 и справедливо равенство

Если x0 – произвольная точка, то

.

7) производная обратной функции

Пусть дана функция y=f(x), D(f)=X, E(f)=Y.

Обозначим x=g(y) – обратную функцию для y=f(x).

Как найти

Теорема.

Если

  1.  функция f(x) строго монотонна и непрерывна в X
  2.  в точке x0X существует

то в соответствующей точке y0=f(x0) также существует производная от  обратной функции, равная

 


 

А также другие работы, которые могут Вас заинтересовать

17800. Поверхні другого порядку 3.67 MB
  Лекція 15. Поверхні другого порядку Загальне рівняння поверхні другого порядку Загальним рівнянням поверхні другого порядку називається рівняння виду 15.1 Розглянемо типи поверхонь які визначаються цим рівнянням. Довільна циліндрична поверх
17801. Обернена матриця 175.61 KB
  Лекція 7. Обернена матриця Матрицею А оберненою до квадратної матриці розміру n х n називається така для якої справедлива рівність 3.32 Наприклад легко перевірити рівність = Таким чином одна із перемножуваних матриць є оберненою від
17802. МІЖНАРОДНА ЕКОНОМІЧНА СИСТЕМА 275.5 KB
  ТЕМА 1. МІЖНАРОДНА ЕКОНОМІЧНА СИСТЕМА Предмет курсу міжнародна економіка. Міжнародна економічна система: сутність та структура. Міжнародні економічні відносини. Міжнародна економічна діяльність. Сукупність національних економік. Класифікація країн за рівнем со
17803. Міжнародна торгівля 1.42 MB
  Міжнародна торгівля Місце міжнародної торгівлі в МЕВ. Світовий ринок товарів і послуг та особливості його розвитку в сучасних умовах. Показники масштабів структури динаміки й результативності міжнародної торгівлі. Еволюція теорій міжнародної торгівлі. Вид
17804. МІЖНАРОДНІ ІНВЕСТИЦІЇ 565.5 KB
  Причини і суть міжнародного руху капіталу. Форми іноземних інвестицій. Транснаціональні корпорації та їх роль в сучасному розвитку міжнародних економічних відносин. Стан та проблеми іноземного інвестування в Україні.
17805. МІЖНАРОДНИЙ КРЕДИТ 170 KB
  Тема 4. МІЖНАРОДНИЙ КРЕДИТ Міжнародний кредит та його роль в міжнародних економічних відносинах. Форми та види міжнародного кредиту. Світовий фінансовий ринок. Міжнародні валютнофінансові організації. Проблема заборгованості та можливі шляхи її розвязання. 1. М...
17806. МІЖНАРОДНА МІГРАЦІЯ РОБОЧОЇ СИЛИ 336 KB
  Тема 5. Міжнародна міграція робочої сили Міграція населення і міграція робочої сили. Суть і чинники міжнародної міграції робочої сили. Види міжнародної міграції робочої сили. Види міжнародної міграції: кінцева тимчасова сезонна маятникова добровільна примусова ро...
17807. СВІТОВА ВАЛЮТНА СИСТЕМА 381.5 KB
  ТЕМА 6. СВІТОВА ВАЛЮТНА СИСТЕМА Структура сучасної валютної системи. Національна міжнароднарегіональна та світова валютна система. Основні елементи національної валютної системи. Основні елементи світової валютної системи. Поняття валюти та її види. Конвертовані
17808. МІЖНАРОДНІ РОЗРАХУНКИ І ПЛАТІЖНИЙ БАЛАНС 232 KB
  TЕМА 7. Міжнародні розрахунки і платіжний баланс Поняття міжнародних розрахунків. Форми міжнародних розрахунків та їх порівняльна характеристика. Платіжний баланс його структура і методологія складання. Платіжний баланс України стан структура динаміка. Міжна