20727

Исторический обзор оснований геометрии. «Начала» Евклида

Доклад

Математика и математический анализ

И если к равным прибавить равные то получим равные. И если от равных отнимем равные то получим равные. И если неравным прибавить равные то получим неравные. И если удвоим равные то получим равные.

Русский

2013-07-31

28 KB

13 чел.

Вопрос № 12 Исторический обзор оснований геометрии. «Начала» Евклида.

Первые сведения о геометрии были добыты цивилизациями ДР. Востока(Египет, Вавилон, Китай, Индия) связи с развитием земледелия. Геометрия этих стран представляла собой собрание частных решений отдельных задач. Во II тысячелетии до н.э. египтяне умели вычислять площадь ∆-а, объем 4угольной усеченной пирамиды, площадь круга радиуса R(, π=3.16…) В Др. Греции геометрия начала развиваться в VII-Viвв до н.э.: Фалес(доказал несколько простейших теорем: свойства вертикальных углов, углов при основании равнобедренного ∆-а и др.), пифагорейцы открыли Т о Σ углов ∆-а,существование 5 типов правильных многогранников,..; Демокрит (Т об объемах пирамиды, конуса), Архимед (правило для вычисления площади поверхности шара и др. фигур, объемов ряда тел.

Особая заслуга древнегреческих математиков – постановка задачи о построении системы геометрических знаний (Платон, Аристотель).

Евклид (330-275 гг. до н.э.) – воспитанник школы Платона, один из величайших геометров древности. Он преподавал математику в Александрии. Написанные им «Начала» дают систематическое изложение начал геометрии, выполненные с таким мастерством, что многие века после Евклида преподавания велись по его книгам.

Начала состоят из 13 книг.

1 кн. посвящена треугольникам, теоремам о ∆-ах, теории параллельных, условия равновеликости ∆-ков и многоугольников, Т Пифагора.

2: превращение многоугольника в равновеликий квадрат.

3: окружность и все о ней

4: вписанные и описанные многоугольники, построение правильных многоугольников.

5: теория пропорций

6: теория подобия треугольников

7-9: арифметика в геометрическом изложении (изучаются основные свойства натуральных чисел, вводится понятия простого и составного числа, НОД, НОК, доказана Т о бесконечности простых чисел)

10: несоизмеримые отрезки

11-13: основы стереометрии, причем 13-я кн. вся посвящена правильным многогранникам .

замечено, что не все математические знания, известные к тому времени, были отражены в книгах, в частности, Т конических сечений, кривые более высоких порядков.

Каждая из книг начиналась с определения всех тех понятий, которые встречаются. Так в начале 1-ой кн. даны 23 определения:

Опр1. Точка есть то, что не имеет частей.

Опр2. Линия есть длина без ширины.

Опр3.Границы линии – суть точки.

Опр4. Прямая есть такая линия, которая одинаково расположена по отношению ко всем своим  точкам.

Опр5. Поверхность есть то, что имеет только длину и ширину.

Опр6. Границы поверхности суть линии.   

Опр7. Плоскость есть поверхность, которая одинаково расположена по отношению ко всем прямым на ней лежащим.

Опр8. Плоский угол есть взаимное наклонение 2-х встречающихся линий, расположенных в одной плоскости.

После определений Евклид формулирует предложения, которые принимаются без доказательств, разбивая их на постулаты и аксиомы.

П1 Требуется, чтобы от каждой точки ко всякой другой точки можно было провести прямую линию.

П2 И чтобы каждую прямую можно было неограниченно продолжить.

П3 И чтоб из любого центра можно было провести окружность любого радиуса.

П4 И чтобы все прямые углы были равны.

П5 И чтобы всякий раз, когда прямая при пересечении с другими прямыми образует внутренние односторонние углы, сумма которых <1800 (2-х прямых), эти прямые пересекались бы с той стороны, с какой эта сумма <1800.

А1.Равные порознь третьему равны между собой.

А2. И если к равным прибавить равные, то получим равные.

А3. И если от равных отнимем равные, то получим равные.

А4. И если неравным прибавить равные, то получим неравные.

А5. И если удвоим равные, то получим равные.

А6. И половины равных равны между собой.

А7. И совмещающиеся равны.

А8. И целое больше части.

А9. И две прямые не могут заключать пространство.

Вслед за аксиомами Евклид излагает теоремы геометрии, располагая их  в строгой логической последовательности, чтобы каждое следующее предложение(Т) можно было бы доказать исходя из постулатов, аксиом и уже доказанных Т. Перечисление определений, аксиом, постулатов, достаточно для строгого логического доказательства всех последующих Т-м называется аксиоматическим обоснованием геометрии. Задача аксиоматического обоснования геометрии, поставленная Евклидом, была решена им стой степенью строгости, которая была доступна античной древности и принимается за образец изложения. Но если рассматривать «Начала» с современной точки зрения, то надо признать это изложение во многом не удовлетворительным. 1)Некоторые из встречающихся в ней понятий сами должны быть определены (граница, длина, ширина). 2)Ни одно из приведенных определений основных понятий в теоремах не используется и они могут быть опущены. 3) Список аксиом и постулатов недостаточен (постулаты не дают возможность обосновать понятия «точка прямой лежит между двумя другими ее точками», «точка лежит внутри ∆-а» и т.д., понятие равенства фигур доказывается с помощью движения, но понятие «движение» не формулируется.) 4) многие ученые пытались доказать 5-й постулат как теорему. И сам Евклид отодвигал использование этого постулата в доказательстве Т-м. До XIX в. было предпринято много попыток доказать V постулат, Но попытки содержали ошибки, т.к. на каком-то этапе доказательства опирались на утверждения, эквивалентные 5-му постулату (две //-е прямые пре пересечении их третьей прямой образуют равные соответственные углы; существуют подобные ∆-и; Σ внутренних углов ∆-а равна двум прямым и др.) В XIX в. Лобачевский обосновал утверждение о том, что 5 постулат нельзя вывести из остальных аксиом геометрии.

 

 


 

А также другие работы, которые могут Вас заинтересовать

49668. Построение модели оценки кредитоспособности заемщика 161.5 KB
  Зачастую коммерческие банки сталкиваются с проблемами неплатежей по кредиту изза того что еще на начальной стадии принятия решений о выдаче или невыдаче кредита неправильно оценили потенциальные риски что и привело к негативным результатам. На основе имеющихся данных о финансовых показателях компаний и наличия отсутствия последующих проблем с выплатой кредита мы обучим компьютерную программу только на основе данных о финансовых характеристиках компании выдавать прогноз о том сможет ли компания погасить кредит без проблем или это будет...
49671. ОЦЕНКА ФИНАНСОВЫХ РИСКОВ 917.5 KB
  Жилая недвижимость и способы ее оценки Стандартные методы анализа оценки стоимости квартир не всегда приводят к точному и адекватному результату. Существует множество методик оценки многие из них рекомендованы для применения Российским Обществом Оценки. Таким образом с помощью нейронных сетей можно добиться объективной оценки жилой недвижимости.
49672. Оценка стоимости квартир в г.Перми на основе нейросетевого подхода 807.5 KB
  Искусственные нейронные сети прочно вошли в нашу жизнь и в настоящее время широко используются при решении самых разных задач и активно применяются там где обычные алгоритмические решения оказываются неэффективными или вовсе невозможными. Нейронные сети исключительно мощный метод моделирования позволяющий воспроизводить чрезвычайно сложные зависимости. Нейронные сети привлекательны с интуитивной точки зрения ибо они основаны на примитивной биологической модели нервных систем. Искусственные нейронные сети подобно...
49675. База данных футбольного клуба 597 KB
  Разработка модели сущность связь базы данных Разработка базы данных в среде СУБД ccess 2003. Создание схемы данных