20732

Группа аффинных преобразований и ее подгруппы. Приложения аффинных преобразований к решению задач

Доклад

Математика и математический анализ

Зададим на плоскости два аффинных репера аф.репером R на плоскости наз. Упорядоченная тройка точек ОA1A2 этой плоскости не лежащих на одной прямой. Пишут:R={ОA1A2} R={O1 2 } R={O 1 2} и рассмотрим отображение f плоскости в себя по закону: координаты точки M=fM в репере R равны соответствующим координатам х у точки М в репере R.

Русский

2013-07-31

105 KB

55 чел.

  1.  Вопрос № 6 Группа аффинных преобразований и ее подгруппы. Приложения аффинных преобразований к решению задач.

Зададим на плоскости два аффинных репера (аф.репером R на плоскости наз. Упорядоченная тройка точек О,A1,A2 этой плоскости, не лежащих на одной прямой. Пишут:R={О,A1,A2}) R={O,1, 2 }, R’={O’, ’1, 2} и рассмотрим отображение f плоскости в себя по закону: координаты точки M’=f(M) в репере R’ равны соответствующим координатам х, у точки М  в репере R.Данное отображение является преобразованием плоскости; его наз-т аффинным преобразованием. Очевидно, R’=f(R).

Если взять репер R ортонормированным, а репере R’ таким, что ’1 2  и |’1|=|’2|=k, то аф.преобразование f|R’=f(R) становится подобием плоскости с коэффициентом подобия k. Итак, преобразование подобия плоскости является частным случаем аффинного преобразования.

Возьмём два аф.репера  R={O,1, 2 }, R’={O’, ’1, 2}, где ’11, ’22. В аф.преобразовании f|f(R)=R’ для точек M и M’=f(M) имеем:

      =x1+y2, = x1+y2

Отсюда  =k* И, значит, f является гомотетией с цениром О и коэффициентом k. Следовательно, гомотетия является преобразованием аффинным.

 Если аф.преоб. f определяется аффинными реперами R и R’ с различными началами OO’ и одними и теми же координатными векторами 1,2, то

          = x1+y2,          = x1+y2

И, значит,  Но          =        +

Поэтому MM’=OO’ . Следовательно, аффинное преобразование f является переносом с вектором переноса OO’ . Таким образом, перенос- преобразование аффинное.

Возьмём два аф.репера  R={O,1, 2 }, R’={O’, ’1, 2} с общим началом О,таких, что  ’1=1, ’22 (α≠1).

Упорядоченная пара реперов {R,R’} определяет аффинное преобразование f|f(R)=R’, в котором точки М и M’=f(M) имеют одинаковые координаты относительно реперов R и R’ соответственно:  

 OM= x1+y2          OM’= x’1+y’2= x1+λy2 

Отсюда следует, что в репере R точки М и M’ имеют координаты:M(x,y), M(xy). Значит, точки прямой а(Oa, 1||a) неподвижны. Пусть Ма, тогда вектор MM’=y(λ-1) 2 параллелен прямой b(Ob, 2||b). Обозначим P=(MM’)a. Находим: MP=-y2,  PM’=λ2           MP = -(1/ λ)PM’         PM’= λPM’.

Следовательно, рассмотренное аффинное преобразование f обладает свойствами:

  1.  каждая точка прямой а неподвижна
  2.  каждая точка Ма переходит в такую точку M’, что:

а) прямая (MM’) параллельна прямой и, пересекающей а

б) каждая точка P=(MM’)а делит отрезок [MM’] в одном и том же отношении (равном –(1/λ).

Аффинное преобразование плоскости, обладающее указанными свойствами, называют косым сжатием плоскости, прямую а- осью сжатия, направление прямой b-направлением сжатия, λ-коэффициентом сжатия.

Обозначим через А множество всех аффинных преобразований плоскости. Пусть f, gA и R-какой-либо аффинный репер, f(R)=R’, g(R’)=R”→(gf)(R)=R”.

Если х, у-координаты т.М в репере R’ и точка M”=g(M’) в репере R”.

Произведение gf преобразований f и g переводит точку М(с координатами х, у в репере R) в точку M” (с теми же координатами х,у в репере R”). Следовательно, gf-аффинное преобразование плоскости; оно определяется упорядоченной парой реперов {R,R”}.

Точно так же, если аффинное преобразование f переводит репер R в R’, то аффинное преобразование, переводящее R’ в R, будет преобразованием f-1, обратным к преобразованию f. Мы показали, что f, gAgfA и fAf-1A.

Следовательно, множество А-группа;она наз.группой аффинных преобразований плоскости. Группа Г подобия плоскости- подгруппа группы А. Всякое аффинное преобразование сохраняет отношение трёх точек прямой. Это основной инвариант группы А.

Задача Доказать, что для произвольной трапеции ABCD точка М пересечения диагоналей, середины E, F оснований и т.S пересечения прямых, на которых лежат боковые стороны трапеции, лежат на одной прямой.

Аффинным преобразованием f переведём треуг. ABS в равнобедренный треуг. ABS:SA=SB’(например, косым сжатием, определяемым осью (SA) и точками B,B’, где B’(AB), [SB’][SA]. Трапеция ABCD перейдёт в равнобeдренную трапецию ABCD и прямая (SM)- в ось симметрии (SM’) этой трапеции. Так как аффинное преобразование сохраняет простое отношение трёх точек, то прообраз (SM) прямой (SM’) проходит через середины E,F оснований данной трапеции ABCD. Утверждение доказано.


ОМ
 

ОМ'

ОМ

ОМ=ОМ

ОМ

ОМ

О'М

MМ

MO

ОO’

О'М

B’

B

F’

F

A

C’

D

S

E

E’

C

M

 M’


 

А также другие работы, которые могут Вас заинтересовать

9886. Экспресс метод оценки пластового давления 11.55 KB
  Экспресс метод оценки пластового давления Допустим у нас была ситуация, когда вахте нельзя было работать на устье, скважину за герметизировали, т.е. перекрыли затрубное пространство. В затрубье поступил пластовый флюид. После закрытия скважины ждут ...
9887. Понятие о профиле ствола скважины, зенитном угле, азимуте, инклиннограмме 16.2 KB
  Понятие о профиле ствола скважины, зенитном угле, азимуте, инклиннограмме. Профили направленных скважин подразделяют на 3 основных типа: 1)Тангенциальная скважина. Отклоняют вблизи поверхности до величины угла, соответствующего техническим условиям,...
9888. Признаки НГВП 13.75 KB
  Признаки НГВП Признаки НГВП: 1)увеличение объема БР из скважины при неизменной подаче, т.е. БН выдают 20л/с, а станция контроля выдает 25л/с 2)увеличение скорости потока БР или расхода 3)когда БИ поднимают из скважины, то через определенный интерв...
9889. Оптимальное управление 291 KB
  Оптимальное управление ВВЕДЕНИЕ Задачи оптимального управления относятся к теории экстремальных задач, то есть задач определения максимальных и минимальных значений. Развитие теории экстремальных задач привело в XX веке к созданию линейного программ...
9890. Принцип максимума Понтрягина 177 KB
  Принцип максимума Понтрягина. Эффективным средством исследования задач оптимального управления является принцип максимума Понтрягина, представляющий собой необходимое условие оптимальности в таких задачах. Формулировка принципа максимума. Рассмотрим...
9891. Принцип максимума Понтрягина. 84 KB
  Принцип максимума Понтрягина Предложен Л.С. Понтрягиным в 1956 г. Рассмотрим процесс, описываемый системой ОДУ: x - n-мерный вектор состояния (фазовые координаты) u - r-мерный вектор управляющих воздейств...
9892. Классические методы безусловной оптимизации 101 KB
  Классические методы безусловной оптимизации Классический подход к задаче определения локальных и глобальных минимумов состоит в использовании методов математического анализа для поиска уравнений, которым должны удовлетворять эти точки, и для решения...
9893. Итерационные методы оптимизации функций одной переменной 124 KB
  Итерационные методы оптимизации функций одной переменной Методы деления интервала С помощью численных (итерационных) методов можно, например, определять минимум функции в некотором интервале , в котором, как предполагается, лежит точка минимума. При...
9894. Оптимизация функций многих переменных 127 KB
  Оптимизация функций многих переменных Разнообразные методы многомерной оптимизации различают обычно по виду информации, которая необходима им в процессе работы: - методы прямого поиска (методы нулевого порядка), которым нужны только значения целевой...