20736

Трехмерное евклидово пространство. Скалярное, векторное и смешанное произведение векторов. Приложение к решению задач

Доклад

Математика и математический анализ

Скалярное векторное и смешанное произведение векторов. Основные отношения сумма векторов скалярное произведение умножение вектора на число. Аксиомы: аксиомы линейных векторов аксиома размерности аксиомы скалярного произведения. Линейное векторное пространство называется евклидовым если каждым двум векторам a и b этого пространства поставлено в соответствие число α называемое скалярным произведением этих векторов.

Русский

2013-07-31

55.5 KB

86 чел.

Геометрия

10. Трехмерное евклидово пространство. Скалярное, векторное и смешанное произведение векторов. Приложение к решению задач.

В отличие от аффинного пространства в трехмерном евклидовом пространстве присутствуют такие фундаментальные понятия как: длина отрезка, длина вектора, угол между векторами, перпендикулярность и т. д.

Основными объектами являются векторы.

Основные отношения - сумма векторов, скалярное произведение, умножение вектора на число.

Аксиомы: аксиомы линейных векторов, аксиома размерности, аксиомы скалярного произведения.

Линейное векторное пространство называется евклидовым, если каждым двум векторам a и b этого пространства поставлено в соответствие число α, называемое скалярным произведением этих векторов.

Скалярное произведение двух векторов: число равное произведению их модулей на косинус угла между ними.

Обозначение скалярного произведения: =ab. Оно удовлетворяет следующим аксиомам:

V1 Для любых векторов a и b имеет место равенство: ab=ba

V2 Для любых векторов a,b и c имеет место равенство: a(b+c)=ab+ac

V3 Для любых векторов a,b и любого числа α имеет место равенство: (a)b= (ab)

V4 Если а≠0, то aa>0

Обозначение векторного евклидового пространства: En

Число -действительное. Это число называется  модулем вектора a и обозначается:

Если, а≠0 то aa>0, поэтому ≠0. Вектор a называется единичным, если =1.

Следствия из аксиом:

  1.  Если, а=0, то =0, если,  а≠0, то ≠0
  2.  Если ba, то

Векторным произведением вектора а на вектор b называется вектор p, определяемый следующими условиями:

а) модуль вектора p равен площади параллелограмма, построенного на векторах a и b.

б) вектор p перпендикулярен как к вектору a, так и к вектору b.

в) если векторы a и b не коллинеарны, то вектор p направлен так, что тройка упорядоченных векторов abp имеет правую ориентацию. Обозначение: .

Теорема.

Для того чтобы векторы были коллинеарны, необходимо и достаточно чтобы их векторное произведение равнялось нулю.

Если а≠0 и b≠0, то Векторное произведение векторов, в отличии от скалярного является вектором. Условие а) определяет модуль векторного произведения, а условия б) и в)- направление этого вектора. Вообще говоря, ≠

Свойства векторного произведения:

Для произвольных векторов a, b и c  и произвольного числа α имеют место св-ва:

1) = -

2)

3)

Если =0,где a и b –не равны нулю, то такие вектора - коллинеарны.

Тройным или смешанным произведением векторов x,y,z ориентированного пространства называется значение функции объема для векторов x,y,z, т. е. число f(x,y,z)

Обозначение: xyz

Свойства: a,b,c,d- произвольные вектора, - произвольное число

а)abc=bca=cab

б)abc= - bac,abc= -cba,abc= -acb;

в) (a)bc=(abc),a(b)c=(abc),ab(c)= (abc);

г)(a+b)cd=acd+bcd,a(b+c)d=abd+acd, ab(c+d)=abc+abd

Следствия из свойств:

1) (a)(b)(c)=( )abc

2)Для любых векторов a1,a2,...ak:

(a1+a2+...+ak)bc= a1bc+ a2bc+...+ akbc

3)Если a,b,c – произвольные векторы, а  p,b,c- компланарны, то (a+p)bc=abc.

Чтобы векторы a{1,2,3}, b{1,2,3},c{1,2,3}-были компланарны, необходимо и достаточно чтобы:=0

Теорема

Смешанное произведение abc есть объем ориентированного параллелепипеда, построенного на векторах a,b,c, если a,b,c не компланарны, и объем параллелепипеда, построенного на этих же векторах, если они компланарны.

Приложение: на основе этой теории решаются множество задач на рассмотрение свойств пространственных многоугольников,(тетраэдр, параллелепипед..) В частности с помощью смешанного произведения доказывается теорема синусов. Нахождение углов между плоскостями, вычисление объемов и т. д.


 

А также другие работы, которые могут Вас заинтересовать

77281. To Reality of Automation Debugging of Programs with Large Executing Time 23 KB
  Shrf Yekterinburg Debugging is process of locliztion nd correction of progrm errors. Modern debuggers supporting monitoring during progrm execution help in locliztion of errors. But lmost ll of monitoring control nd the dt nlysis re entrusted to progrmmers.
77282. Удалённая визуализация для инженерных вычислений 14 KB
  В отличие от этапа расчёта стадии предварительной обработки данных и последующий за расчётом анализ требуют интерактивного взаимодействия с оператором. Возникает задача передачи исходных данных от компьютера пользователя к вычислительным ресурсам и задача передачи результатов расчётов обратно. Последняя задача выглядит особенно ресурсоёмкой в связи с тем что время затрачиваемое на передачу может оказаться весьма продолжительным в связи с большим объемом передаваемых данных. Кроме того в связи с современным спросом на услуги вычисления...
77283. Utilizing pattern recognition algorithms to capture gesture-based languages without using marking devices 21.5 KB
  Regrding the forementioned conditions it is importnt to reserch modern ptternrecognition lgorithms. This work includes nlysis of vrious imge trnsformtion lgorithms used for pttern recognition nd combintions of such lgorithms to improve results. Firstly these lgorithms include object edge detection lgorithms lgorithms to trnsform bitmp imges to vector grphics outline nlysis lgorithms neurl net lgorithms.
77284. Среда поддержки интерактивной визуализации для суперкомпьютерных вычислений 662 KB
  Возможностью визуализации состояния программы во время её работы занимается так называемая онлайнвизуализация. Также её иногда называют визуализацией по ходу вычислений – в противовес традиционной визуализации после вычислений которая проводится после полного завершения расчётов. Более сложные случаи требуют наличия специальной системы для поддержки онлайнвизуализации.
77285. Web based computational steering system 52.5 KB
  Secondly person cn shorten the debugging time of prllel progrm becuse person is ble to drive the computtion process djusting the lgorithm prmeters or progrm execution pth ccording to his needs. t the moment we hve developed smll nd cler PI nd dt server for prllel progrm developers tht llows progrm to be visulized online. Computtion nodes re prllel progrm processes with some embedded PI clls which connects them to the steering system. Visuliztion frontends re set of worksttion progrms which visulize the tsk stte nd give the bility to...
77287. О СОЗДАНИИ СРЕДЫ РАЗРАБОТКИ СИСТЕМ НАУЧНОЙ ВИЗУАЛИЗАЦИИ 33 KB
  При визуализации той или иной сущности специфическими являются выбор конкретного двух или трехмерного геометрического представления абстрактного объекта и разработка алгоритма построения этого представления на основе данных производимых вычислительной программой. Можно выделить три класса систем визуализации. Наконец к третьему классу относятся специализированные системы визуализации созданные специально для данного исследовательского проекта или даже конкретного пользователя.
77289. ON DEVELOPING ENVIRONMENT FOR CONTRUCTING SYSTEMS OF SCIENTIFIC VISUALIZATION 29 KB
  One cn distinguish three clsses of visuliztion systems. The first one consists of universl systems which include set of lgorithms for constructing wide rnge of typl representtions. For exmple wellknown systems PrView nd VS belong re of this kind.