20755

Плоскошлифовальный станок и его настройка

Лабораторная работа

Производство и промышленные технологии

Распределитель 14 управляется распределителем 21 положение которого зависит от крана реверса 27. В результате распределитель 14 занимает левое положение А. В результате распределитель 14 занимает левое положение А. От расположения упоров зависит длина хода и исходное положение стола.

Русский

2013-07-31

169.73 KB

39 чел.

Лабораторная работа №28 Плоскошлифовальный станок и его настройка

Цель работы: изучить устройство плоскошлифовального станка и методику расчета режима резания при плоском шлифовании.

Оборудование и материалы. Плоскошлифовальный станок модели ЗЕ721ВФ1-1; шлифовальный круг диаметром D = 300 мм и шириной В = 40 мм; стальные заготовки для выполнения плоского шлифования периферией круга; магнитная плита; штангенциркуль.

Общие сведения

Станок ЗЕ721ВФ1-1 предназначен для шлифования плоских поверхностей периферией круга. Вследствие высокого уровня автоматизации цикла обработки, целесообразно использовать его в средне- и крупносерийном производстве.

Техническая характеристика

Размеры рабочей поверхности стола  630х320

(длина х ширина), мм

Скорость продольного перемещения стола 2-35

(регулируется бесступенчато), м/мин

Наибольший диаметр шлифовального круга 300

Основные узлы и движения (рис.5.45). Главное движение — вращательное движение шлифовального круга с горизонтальной осью. Заготовку закрепляют на столе 1, который совершает продольное возвратно- поступательное движение по крестовому рапорту 2 (направляющие скольжения). Суппорт вместе со столом может перемещаться в поперечном направлении по станине 6 (направ-

Рис.5.45. Плоскошлифовальный станок

ЗЕ721ВФ1-1 с прямоугольным столом

ляющие качения). Третье поступательное движение — по вертикали — сообщается шлифовальной головке 9 по направляющим качения колоны 8. Механизмы 4 и 5 служат приводами поперечного и вертикального перемещения. При шлифовании горизонтальной плоскости продольные и поперечные движения используют для подачи, вертикальное — для углубления. Справа от станка установлена гидростанция 7, слева — блок охлаждения 3.

Кинематическая схема станка представлена на рис.5.46.

Привод главного движения состоит из асинхронного двигателя Ml и поликлиновой ременной передачи 0166/0112. Уравнение кинематического баланса цепи главного движения имеет вид: птп = 1500 • 166/112 = 2200 мин1.

Рис.5.46. Кинематическая структура станка ЗЕ721ВФ1-1

Продольное движение подачи стол получает от гидроцилиндра (рис.5.47). При включении гидропривода колесо 24 па валу II выходит из зацепления с рейкой. Ручное перемещение стол получает от маховика Р1 через планетарный механизм 30-28-29-29, обеспечивающий большую редукцию, и реечную передачу.

Стол приводится в движение гидроцилиндром 26. Направление движения зависит от положения распределителя силового потока 14. В положении А с линией нагнетания 16 соединена правая полость гидроцилиндра (движение влево), а со сливной магистралью — левая полость.

Распределитель 14 управляется распределителем 21, положение которого зависит от крана реверса 27. В положении А крана давление управления из магистрали 40 передается через трубопроводы 29 и 25 к правому торцу распределителя 21; трубопровод 24 у левого торца соединен со сливной магистралью 30.

Распределитель 21 оказывается в левом положении, пропуская масло к правому торцу распределителя 14 по цепи 19-18-17 и от левого торца распределителя 14 по цепи 20-21-30. В результате распределитель 14 занимает левое положение (А).

Рис.5.47. Гидравлическая схема станка ЗЕ721ВФ1-1

Распределитель 21 оказывается в левом положении, пропуская масло к правому торцу распределителя 14 по цепи 19-18-17 и от левого торца распределителя 14 по цепи 20-21-30. В результате распределитель 14 занимает левое положение (А).

В крайних положениях стола закрепленные на нем переставные упоры переключают кран реверса 27. От расположения упоров зависит длина хода и исходное положение стола. При переключении крана в положение Б распределитель 21 перемещается вправо, вследствие чего распределитель 14 перемещается также вправо (положение Б). С напорной магистралью 16 соединяется левая полость гидроцилиндра 26, со сливной магистралью 15  - правая полость. В результате происходит реверсирование стола: он движется вправо.

Напорная магистраль 16 питается маслом от насоса 1 большой производительности по цепи 3-4. В положении А распределителя 9 магистрали 15 и 16 соединяются между собой и цепью

9-13-30-7 с баком  6 —стол останавливается. Чтобы уменьшить расход энергии и нагрев масла, часть его сбрасывается через переливной клапан5 по цепи 1-5-30-7-6. Это происходит вследствии того что клапан5 поднимается давлением, возникающим перед обратным клапаном7 (цепь 7-30-13-9-15-1 1-23-21-22-5). Распределитель 9 занимает положение А при произвольном останове стола,когда кран 48 устанавливают в положение А (электромагнит ЭМ1 включен – распределитель 50 в положении А). При этом линии 51 и 12 соединены со сливом через трубопроводы49.

Для пуска стола надо установить кран 48 в положение Б. Тогда давление управления, развиваемое в линии 40 насосом 2, передается по цепи 32-35-34-48-50-51-9 к левому торцу распределителя 9. Последний перемещается в положение Б, отсекая напорную магистраль 16 от слива и соединяя линию 15 с баком через дроссель 8. Этим дросселем регулируются скорость стола, в результате чего изменяется давление в цепи

10-9-15-14-23(или 28)-22-5. Степень открывания клапана 5 и следовательно, давление в линии нагнетания 16 меняется таким образом, что перепад давления между напорной и сливной линиями сохраняется (система с постоянным противодавлением). Подпитка меньшие насосом 2 линии нагнетания большего насоса 1 через дроссель 43 обеспечивает устойчивость движения при малой скорости.

Цикл обработки заканчивается выключением электромагнита ЭМ1 — распределитель 50 занимает положение Б. При этом масло от крана 48, сохраняющего положение Б, передается по магистрали 12 к правому торцу распределителя 9. Происходит переключение распределителей: 9 — в положение В и 18 — в положение Б. Магистраль 15 соединяется с баком через линию I I.

Стол останавливается в крайнем правом положении на жестком упоре. При подходе к упору поясок поршня перекрывает слив из камеры в крышке цилиндра, и масло может выходить только через дроссель стол тормозится. Устройство 33 с запорными шариковыми клапанами служит для выпуска воздуха из гидроцилиндра 26.

Дополнительная гайка-поршень устраняет зазор в передаче винт-гайка поперечного перемещения. Для поджима поршня при движении давление передается через редукционный клапан 44 в положение А крана 46. Для фиксации суппорта кран 46 переключается в положение Б — масло поступает, минуя клапан 44, под большим давлением. Конечный выключатель ВК, связанный с рукояткой крана 46, препятствует включению электродвигателя поперечной подачи в положение Б крана, когда суппорт зафиксирован.

Для блокировки масло пропускают в линию 34 только после перемещения плунжера 35, связанного с реечным колесом ручного привода.

Плоскошлифовальный станок модели ЗЕ721ВФ1-1 работает по принципу продольно-строгальных станков. Процесс шлифования плоскостей осуществляется периферией круга. Шлифовальный круг вращается с окружной скоростью ик р, а заготовка совершает возвратно-поступательное движение со скоростью v3. Если круг по ширине меньше ширины обрабатываемой поверхности, он имеет поперечную подачу Sn в направлении, перпендикулярном продольному перемещению стола (рис.5.48). Для удаления всего припуска на обработку круг имеет также и вертикальную подачу на глубину 5Т. Поперечная подача круга осуществляется в конце каждого хода стола.

Поперечное перемещение крестового суппорта осуществляется ходовым винтом с шагом Р = 5 мм. Источником автоматического движения является двигатель постоянного тока М2. При этом зубчатая муфта М2 включена. Наибольшая скорость суппорта

3000·25/100·40/90·90/100 = 1,5 м/мин.

При переводе кнопки Р2 влево выключается муфта М2 и включается муфта M1 ручного привода. Для малых точных

Рис.4.48. Схема плоского шлифования

перемещений поворачивают рукоятку Р4, передавая движение через червячную передачу 1/100 и муфту M1 на вал УП. Быстрее перемещение создается маховиком РЗ, при этом червяк должен быть выведен из зацепления с червячным колесом поворотом рукоятки Р5 (опоры червяка расположены в эксцентричной втулке).

Ручной привод вертикального перемещения (Р6, Р7, Р8, Р9) унифицирован с ручным приводом поперечного движения. Муфты М3 и М5 должны быть включены, М4 — выключена. Программируемое автоматическое перемещение включается при реверсировании суппорта (или стола — при врезном шлифовании) и осуществляется с помощью шагового электродвигателя МЗ и зубчатых колес 34, 100, 100. Должны быть включены муфты М4 и М5 (муфта М3 выключается). Движение с вала XI передается через муфту Ms, карданный вал и червячную передачу 1/30 на гайку с шагом Р = 6 мм. Ускоренное вертикальное перемещение производится от двигателя переменного тока М4 через клиноременную передачу Ø140/Ø130 и червячную передачу 1/30 при выключенной муфте М5.

Расчет режима резания при плоском шлифовании

Пример. Требуется шлифовать горизонтальную поверхность бруска из стали HRCэ2 8, Ra = 1,6 мкм. Длина бруска Ly = 200 vm, ширина его b = 50 мм. Обработку производить на шлифовальном станке модели ЗЕ721ВФ1-1 периферией круга диаметром D = 300 мм, шириной В = 40 мм. Припуск на шлифование h = 0,5 мм.

Решение.

1. Определяем скорость круга икр при шлифовании по формуле

где пкр — частота вращения круга.

2.Вычисляем длину хода круга I по формуле

l = (В + b + l1 + l2) = 50 + 40 + 4 + 4 = 98 мм, где l1 и 12 — величины врезания и перебега шлифовального круга; l1 = 12 = 3-5 мм.

3.Определяем поперечную подачу круга Sn, мм/х, по формуле

Sn = k · В, где k = 0,4-0,7 — коэффициент.

При обработке стали с шероховатостью поверхности Ra 1,6 в соответствии с нормативами принимают k = 0,6. В этом случае Sп = 0,6 ·40 = 24 мм/х.

4.Устанавливаем среднюю скорость продольного движения стола υд. Обычно при шлифовании стали υд = 6-25 м/мин. Для рассматриваемого случая обработки принимаем υд = 6,3 м/мин, что соответствует оптимальному значению в соответствии с нормативами.

5.Определяем подачу на глубину (вертикальную подачу) Stх мм/х (табл.5.25). При припуске на обработку ∆ = 0,5 мм вертикальная подача Stх = 0,08 мм/х.

Таблица 5.25

Значения подач на глубину в зависимости от припуска при обработке незакаленной стали (HRCэ)

6.Вычисляем число одинарных ходов стола п по формуле

п = l/Sn = 98/24 = 4,1. Округляем до большего целого числа, т.е. п = 5 ходов.

7.Определяем длину хода стола LXT

LXT = L + 20 = 200 + 20 = 220 мм.

8.Рассчитываем основное время Т без учета процесса выхаживания

Порядок проведения работы

1.Ознакомиться со схемой плоского шлифования периферией круга и общим устройством плоскошлифовального станка модели ЗЕ721ВФ1-1.

2.Ознакомиться с методикой расчета по выбору режима обработки горизонтальной поверхности бруска.

3.По данным расчета одного из студентов лаборант демонстрирует настройку, наладку и работу станка.

Содержание отчета

1. Схематически изобразить общий вид плоскошлифовального станка модели ЗЕ721ВФ1-1 и показать основные части и узлы станка.

2.Изобразить схему работы гидропривода станка.

3.Выполнить необходимые расчеты для определения скорости шлифовального круга υкр и основного времени в соответствии с индивидуальным заданием (табл.5.26).

Таблица 5.26

Индивидуальные задания


 

А также другие работы, которые могут Вас заинтересовать

27156. Канальное кодирование (модуляция) 137 KB
  Канал Q Канал Q содержит данные хронирования содержимого диска и нужен для обеспечения функций поиска заданного фрагмента повтора воспроизведения по программе а также обеспечивает возможность индикации текущего времени как на диске в целом так и на каждой дорожке в отдельности. Одновременно с этим в графе Начало музыкального фрагмента записывается время соответствующее началу – в минутах секундах и блоках одна секунда 75 блокам номера от 00 до 74 по шкале времени исчисляемому от начала программной зоны диска начало первого...
27157. История цифровой звукозаписи 84 KB
  А первая публичная демонстрация цифровой звукозаписи состоялась в 1967 году. После столь блистательного дебюта цифровой звукозаписи работы в этом направлении начались и на других фирмах. Поэтому внедрение результатов работ по цифровой звукозаписи происходило исключительно в студиях где размеры создаваемых систем и их стоимость существенной роли не играли.
27158. Производство компакт-дисков 125.5 KB
  На поверхность основы дискаоригинала которая при этом должна быть идеально плоской наносится тонкий слой светочувствительного материала – фоторезиста. Структурная схема установки записи дискаоригинала показана на рисунке. Излучение лазера воздействует на фоторезист покрывающий поверхность вращающегося дискаоригинала и оставляет на нем зоны засветки соответствующие единицам цифрового кода.
27159. Световые волны и оптические системы 184.5 KB
  Кроме того колебания векторов Ē и Н происходит строго синхронно и во взаимно перпендикулярных направлениях рис. Поперечные волны обладают изначальным по самой природе им присущим свойством называемым поляризацией. Если на этой плоскости выбрать произвольно некоторую систему координат XY то линейно поляризованный свет будет иметь вид отрезка прямой под определенным углом α к одной из выбранных осей рис. Однако линейная поляризация монохроматической волны наблюдается только тогда когда разность фаз φ между составляющими X и Y суммарного...
27160. Выделение цифрового сигнала и импульсов тактовой синхронизации 192 KB
  Среди таких причин можно назвать следующие: нестабильность мощности записывающего лазера вызывающая разброс размеров длины и ширины формируемых пит; нестабильность мощности воспроизводящего лазера; ограниченность и нелинейность амплитудночастотной характеристики тракта оптического воспроизведения; нелинейность фазочастотной характеристики тракта; неравномерность распределения мощности света в пределах пятна; наличие дифракции на питах; ограниченность апертуры входного зрачка объектива; неравномерность толщины...
27161. Варианты формата CD 221 KB
  Однако значительная информационная ёмкость нового носителя 740 Мбайт навела специалистов на мысль использовать его в качестве элемента постоянной памяти для хранения архивных данных. Каждый кадр как уже описывалось в главе 3 содержит в себе 24 исходных информационных символа байта. В формате CDROM эти 24 символа являются обезличенными и могут нести в себе какую угодно информацию лишь бы она была преобразована в двоичную форму и организована в байты. Изза наличия этой избыточности диск CDROM имеет меньшую информационную ёмкость до...
27162. Digital Versatile Disc (DVD) 187 KB
  Digital Versatile Disc DVD 12. История появления DVD К концу 1994 года в технической прессе стали появляться сообщения о том что известный тандем SONY PHILIPS подаривший миру технологию CD готов представить на суд потребителю еще более совершенный носитель идеально подходящий для записи информации практически любого характера. В процессе работы над новым носителем несколько раз менялось его название отражая основные намерения разработчиков на том или ином этапе: MMCD MultiMediaCD; HDDVD High Density Digital Video Disc; HDCD...
27163. Система магнитооптической записи звука «Минидиск» 224.5 KB
  Звуковые характеристики Число каналов Детонации 2 или 1 отсутствуют Формат данных Частота дискретизации кГц Кодирование сжатие данных Модуляция канальный код Система защиты от ошибок 441 ATRAC EFM 814 ACIRC Оптические характеристики Длина волны излучения лазера нм Числовая апертура объектива Мощность излучения лазера при записи мВт Метод записи 780 045 25 – 50 главный пучок Модуляция магнитного поля 11. В общем случае магнитооптический эффект это изменение оптических свойств вещества в зависимости от его...
27164. СИСТЕМА ЦИФРОВОЙ МАГНИТНОЙ ЗАПИСИ ЗВУКА R-DAT 182.5 KB
  Описание формата RDAT Rotary Head Digital Audio Tape Recorder – это система цифровой звукозаписи на магнитную ленту шириной 381 мм равную ширине ленты в обычной аналоговой компакткассете с помощью вращающихся головок. В отличие от формата CD здесь предусмотрено не только воспроизведение программ но и возможность их записи с высоким качеством. Режим I предназначен для записи и воспроизведения программ с частотой дискретизации 48 кГц при 16 разрядном линейном квантовании.