20911

Исследование однофазных сельсинов

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Систему синхронной связи передающую электрическим путем на расстояние угловые перемещения называют системой передачи угла или синхронного поворота. В системах электрического вала применяют трехфазные сельсины а в системах передачи угла – однофазные сельсины. В зависимости от величины погрешности в индикаторной системе передачи угла сельсины делятся на четыре класса точности см. Параметр точности Класс точности 1 2 3 4 Погрешность следования в дистанционной передаче угла в индикаторном режиме угл.

Русский

2013-08-01

417.5 KB

34 чел.

Сельсины  5

Лабораторная работа №5

Исследование однофазных сельсинов

Цель работы: ознакомление с конструкциями и схемами включения сельсинов, приобретение навыков экспериментального определения их характеристик.

Оборудование, измерительные приборы и инструменты: лабораторная установка, источники переменного тока, вольтметр, магазин сопротивлений.

I. Основные теоретические сведения

Системы синхронной связи находят применение в цепях автоматического контроля, управления и регулирования.

Под системой синхронной связи понимают совокупность устройств, служащих для передачи на расстояние угловых или линейных перемещений, а также для синхронного и синфазного вращения двух или более механически не связанных осей.

Систему синхронной связи, поддерживающую синхронное вращение осей (валов), часто называют системой электрического вала. Систему синхронной связи, передающую электрическим путем на расстояние угловые перемещения, называют системой передачи угла или синхронного поворота.

Часто в указанных системах в качестве основных элементов использую сельсины. В системах электрического вала применяют трехфазные сельсины, а в системах передачи угла – однофазные сельсины.

Существуют различные конструктивные исполнения сельсинов, но при этом обязательно наличие обмоток возбуждения и синхронизации. Обмотка возбуждения у однофазных сельсинов однофазная, а у трехфазных – трехфазная.

Обмотки синхронизации состоят из трех однофазных обмоток, оси которых сдвинуты в пространстве на угол 120°.

Выводы роторных обмоток сельсина маркируются буквой Р, а статорных – буквой С независимо от назначения обмоток.

Для самосинхронизации в пределах одного оборота сельсины выполняются с одной парой полюсов.

Конструктивно сельсины делятся на контактные и бесконтактные.

Однофазные сельсины используют в индикаторном и трансформаторном режимах. При этом система независимо от режима работы состоит из сельсина – датчика (СД) и одного или нескольких сельсинов – приемников (СП). СД связан с механически с объектом контроля или органом управления. СП либо непосредственно отрабатывает угол поворота, задаваемый датчиком (индикаторный режим), либо преобразует его в электрический сигнал, отрабатываемый исполнительным двигателем (трансформаторный режим).

Индикаторный режим может быть использован, если на валу сельсина – приемника находится измерительный прибор с весьма малым моментом сопротивления (например, шкала, сбалансированная стрелка) и требования к точности передачи не очень высоки.

Электрическая схема работы сельсинов в индикаторном режиме представлена на рис. 1.

Обмотки возбуждения (ОВ) датчика СД и приемника СП питаются от одного источника переменного тока. Протекающие в ОВ токи создают в этих обмотках потоки возбуждения, которые индуцируют в обмотках синхронизации эдс. Значения этих эдс в каждом сельсине зависят от взаимного положения осей обмотки возбуждения и обмоток синхронизации.

Если в качестве датчика и приемника выбраны идентичные сельсины, то при одинаковом положении роторов СД и СП относительно обмоток статоров эдс в в обмотках синхронизации будут равны по величине и противоположны по фазе. Ток в линии связи отсутствует. Такое положение датчика и приемника называют согласованным. Угол рассогласования .

Если , то эдс в обмотках синхронизации СД и СП будут различаться. Вследствие этого по линиям связи и обмоткам синхронизации потекут уравнительные токи, которые, взаимодействуя с потоками возбуждения, создадут электромагнитные моменты, стремящиеся повернуть роторы сельсинов в согласованное положение. Ротор датчика обычно связан с задающим механизмом и лишен свободы вращения, поэтому поворачиваться будет только ротор приемника, пока не наступит вновь согласованное положение роторов. Момент, поворачивающий ротор приемника, называется синхронизирующим. Его значение приближено определяется зависимостью

     (1)

где  - коэффициент, зависящий от конструктивных особенностей сельсина и параметров питания.

Реальная зависимость  отличается от синусоиды за счет тормозного момента, обусловленного поперечной составляющей потока. Для ее уменьшения индикаторные сельсины часто выполняют с короткозамкнутой обмоткой по поперечной оси, либо явнополюсными, у которых велик воздушный зазор по поперечной оси.

Точность работы сельсинов в индикаторном режиме зависит от следующих факторов:

  •  удельного синхронизирующего момента;
  •  собственного момента трения СП и момента сопротивления на его валу;
  •  сопротивления линии связи;
  •  магнитной и электрической асимметрии машины;
  •  количества приемников, работающих от одного датчика;
  •  дебаланса ротора приемника;
  •  напряжения и частоты питающей сети.

Практически между роторами СД и СП всегда существует рассогласование – угол статической ошибки, обусловленный перечисленными выше факторами. Наибольший угол статической погрешности определяет величину зоны нечувствительности системы:

     (2)

где  - сумма вредных моментов;  - удельный синхронизирующий момент, то есть синхронизирующий момент при .

В зависимости от величины погрешности в индикаторной системе передачи угла сельсины делятся на четыре класса точности (см. таблицу 1).

Таблица 1.

Параметр точности

Класс точности

1

2

3

4

Погрешность следования в дистанционной передаче угла в индикаторном режиме, угл. мин

±30

±45

±60

±90

Значение синхронизирующего момента и, соответственно точность индикаторной передачи, уменьшается при увеличений сопротивлений линий связи, так это приводит к уменьшению уравнительных токов при одинаковых углах рассогласования.

В схемах автоматики часто применяют схемы, где от одного датчика работает несколько приемников. В таких случаях в качестве датчика используют более мощный сельсин, чем приемники.

Трансформаторный режим применяется для дистанционной передачи угловых перемещений объекту, момент сопротивления которого выше момента, развиваемого сельсином в индикаторном режиме при весьма высокой точности отработки перемещения.

Электрическая схема работы сельсинов в трансформаторном режиме представлена на рис. 2.

Схема состоит из сельсина – датчика, сельсина – приемника, линии связи, усилителя, исполнительного двигателя и редуктора.

При подаче напряжения на обмотку возбуждения СД и некотором угле рассогласования  между положениями роторов датчика и приемника на обмотке возбуждения СП возникает напряжение . Оно усиливается усилителем и поступает на обмотку управления исполнительного двигателя, который через редуктор вращает ротор СП. Вращение осуществляется до тех пор, пока напряжение  не станет равным нулю, то есть когда наступит согласованное положение роторов СД и СП.

Точность работы сельсинов в трансформаторном режиме зависит от следующих факторов:

  •  значение остаточной эдс;
  •  распределение индукции в воздушном зазоре;
  •  крутизна выходного напряжения СП.

В зависимости от величины погрешности в трансформаторной системе передачи угла сельсины делятся на семь класса точности (см. таблицу 2).

Таблица 2.

Параметр точности

Класс точности

1

2

3

4

5

6

7

Погрешность следования в дистанционной передаче угла в трансформаторном режиме, угл. мин

±1

±2

±3

±5

±10

±20

±30

Точность работы сельсинов в трансформаторном режиме выше, чем в индикаторном. Это обусловлено тем, что в трансформаторном режиме момент сопротивления нагрузки преодолевается достаточно большим моментом исполнительного двигателя.

Одним из путей дальнейшего повышения точности передачи угла является создание двухканальных систем, работающих по методу грубого и точного отсчетов.

II. Описание лабораторной установки

Лабораторная установка содержит сельсин – датчик, помещенный на поворотном столике, и три сельсина – приемника (см. рис. 3), помещенных в отдельный корпус. Сельсин – приемник СП1 размещен на передней стенке установки и предназначен для измерения момента, возникающего при наличии рассогласовании между СД и СП. Цена большого деления шкалы при измерении момента составляет  гсм. Сельсин – приемник СП2 предназначен для измерения погрешности передачи в индикаторном режиме, а СП3 – в трансформаторном.

Выключатели ВК1 и ВК2 подключают источники питания (27 В постоянного тока и 36 В, 400 Гц) к лабораторной установке. Клеммы К1, К2 и К3 являются выводами обмоток синхронизации сельсинов. Клеммы К4 являются выводами обмотки возбуждения сельсина СП3.

III. Порядок выполнения работы

  1.  Ознакомиться с принципом действия и конструкциями сельсинов.
  2.  Снять и построить зависимость напряжения на обмотке синхронизации сельсина – датчика от угла поворота его ротора. Измерения необходимо проводить через каждые 30° в пределах одного оборота ротора.
  3.  Для индикаторного режима измерить и построить графики:
  4.  Зависимости синхронизирующего момента СП и токов в линиях связи от угла рассогласования роторов при сопротивлениях линий связи  Ом и  Ом.
  5.  Зависимости погрешности передачи угла от угла поворота ротора СД при сопротивлениях линий связи  Ом и  Ом. Измерения необходимо проводить через каждые 30° в пределах одного оборота ротора.

Для трансформаторного режима измерить и построить графики:

  1.  Зависимости напряжения на обмотке возбуждения сельсина – приемника и токов в линиях связи от угла рассогласования при сопротивлениях линий связи  Ом и  Ом.
  2.  Зависимости погрешности передачи угла от угла поворота ротора СД при сопротивлениях линий связи  Ом и  Ом.
  3.  Сделать выводы по проделанной работе.

IV. Содержание отчета

В отчете должны быть представлены электрические схемы, используемые при исследованиях, полученные таблицы и графики, выводы по работе и перечень приборов, использованных при измерениях.

V. Контрольные вопросы

  1.  Поясните принцип действия индикаторной системы передачи угла на сельсинах.
  2.  Поясните принцип действия трансформаторной системы передачи угла на сельсинах.
  3.  Назовите факторы, определяющий точность передачи угла в индикаторном режиме.
  4.  Назовите факторы, определяющий точность передачи угла в трансформаторном режиме.
  5.  Что такое электрическая схема синхронной связи?

Список рекомендуемой литературы.

1. Баканов М.В., Лыска В.А., Алексеев В.В. Информационные микро-машины следящих и счетно-решающих систем (вращающиеся трансформаторы, сельсины). - М.: Сов. радио, 1977. - 88 с.

2. Хрущев В.В. Электрические микромашины автоматических устройств. -Л.: Энергия, 1976. - 384 с.

3. Ахметжанов А.А. Системы передачи угла повышенной точности. -М.: Энергия, 1966. - 272 с.


 

А также другие работы, которые могут Вас заинтересовать

30842. Ионные каналы 85.5 KB
  Ионные каналы Ионный канал состоит из нескольких субъединиц их количество в отдельном ионном канале составляет от 3 до 12 субъединиц. Ионные каналы работают по механизму облегченной диффузии. каналам пропускающим только один вид ионов натриевые каналы калиевые каналы кальциевые каналы анионные каналы. Некоторые из ионных каналов неселективные например каналы утечки .
30843. . Воспринимать информацию переводить информацию раздражителя на биологический язык клетки. 21.5 KB
  Воспринимать информацию переводить информацию раздражителя на биологический язык клетки. Обрабатывать информацию т. Кодировать информацию превращать информацию в форму удобную для хранения в мозге.
30844. Рецепторная функция нейронов 30 KB
  Сенсорные рецепторы. Клеточные химические рецепторы. Хеморецепторы нейронов к большому числу специфических и неспецифических химических раздражителей внутренней и внешней среды. Сенсорные рецепторы это нервные окончания чувствительные участки нейрона которые способны воспринимать другие нехимические виды раздражения.
30845. Электрогенез нейронов 25.5 KB
  Вызванная активность возникает под действием раздражителей Исходно все нейроны могут быть разделены на: спонтанноактивные фоноактивные нейроны молчащие нейроны нефоноактивные нейроны. Фоноактивные нейроны это такие нейроны которые продуцируют потенциалы действия спонтанно без внешних раздражителей вследствие особенностей своего обмена веществ. Молчащие нейроны это такие нейроны которые без внешнего стимула не отвечают потенциалом действия. Спонтанноактивные нейроны тоже меняют свою активную деятельность под действием...
30846. Нервные проводники 24 KB
  Все волокна по толщине а значит и по скорости проведения возбуждения могут быть разделены на 3 группы: А В С. Волокна А и В относятся к миелинизированным волокнам а волокна С немиелинизированные. Волокна группы А делятся на 4 подгруппы: 1Аальфа. К ним относятся эфферентные волокна скелетных мышц кроме того афферентные волокна от рецепторов мыщц мышечных веретён; 2Абета.
30847. Нейросекреция 44.5 KB
  У каждого медиатора существует целая система синтеза в нейроне. Второй путь накопления медиатора в синапсе аптейк обратный захват медиатора областью пресинаптической мембраны это высокоэнергетический процесс. б она электроневозбудима в она имеет большое число однотипных хеморецепторов которые воспринимают действие медиатора и высокую концетрацию соответствующих ионных каналов хемочувствительныерецепторуправляемые каналы 3. Размер 200500 ангстрем 2050 мкм микрон заполнена межклеточной жидкостью существует...
30848. Физиологические свойства и функции поперечно-полосатых (скелетных) мышц 31.5 KB
  Процесс сокращения может выражаться в изменении длины укорочение мышцы изменении напряжения мышцы в изменении того и другого показателя. Все мышечные сокращения могут быть: 1. изотонические сокращения это такие сокращения когда напряжение тонус мышц не изменяется изо равные а меняется только длина сокращения мышечное волокно укорачивается. ауксотонические смешанные сокращения это сокращения в которых присутствует и один и другой компонент.
30849. Сила мышц 26.5 KB
  Сила мышц Сила мышцы определяется по максимальному грузу который мышца способна переместить или удержать. Абсолютная сила мышцы это максимальное напряжение мышечных волокон на единицу поперечного сечения в один квадратный сантиметр. Сила сокращения мышц зависит от 1.Количества ДЕ участвующих в сокращении чем больше ДЕ тем больше сила и наоборот 2.
30850. Функциональная характеристика неисчерченных (гладких) мышц 21.5 KB
  Это позволяет быстро охватить возбуждением все миоциты данной гладкой мышцы. Гладкие мышцы сокращаются медленно так как расщепление АТФ в них идет в 1001000 раз меньше чем в скелетных мышцах по этому гладкие мышцы приспособлены к длительному тоническому сокращению без развития утомления при этом их энергозатраты крайне невелики. Гладкие мышцы подразделяются: 1 Мышцы обладающие спонтанной активностью автоматией 2 Мышцы не обладающие спонтанной активностью Спонтанная активность зависит от интенсивности обмена веществ в миоцитах от...